

    
      
          
            
  
Pbench

Pbench is a Benchmarking and Performance Analysis Framework.



Pbench Agent







The Agent is responsible for providing commands for running benchmarks across one or more systems, while properly collecting the
configuration of those systems, their logs, and specified telemetry from various tools (sar, vmstat, perf, etc).








Pbench Server







The second sub-system included here is the Server, which is responsible for archiving results and indexing them to
allow the dashboard to prepare visualizations of the results.








Dashboard







Lastly, the Dashboard is used to display visualizations in graphical and other forms of the results that were collected
by the Agent and indexed by the Server.





















            

          

      

      

    

  

    
      
          
            
  
Installation

Choose any one of the following approaches to setup Pbench Agent



	Pbench Agent Container

	RPM based installation
	Setup





	Ansible based installation
	Setup












            

          

      

      

    

  

    
      
          
            
  
Pbench Agent Container

Pbench Agent is available as container images on Quay.io [https://quay.io/organization/pbench]. This makes Pbench Agent a distro-independent solution and it could also be used in any containerized ecosystem.

Want to build container images from sources?

Follow README [https://github.com/distributed-system-analysis/pbench/blob/main/agent/containers/images/README.md]

Running Pbench Agent container is as simple as

podman run quay.io/pbench/pbench-agent-all-centos-8





Depending on the use cases one has to run these containers with privileged mode, host network, pid, ipc, mount required volumes, etc.

Example:

podman run --name pbench --rm -ti --privileged --ipc=host --net=host --pid=host -e HOST=/host -e NAME=pbench -e IMAGE=quay.io/pbench/pbench-agent-all-centos-8 -v /run:/run -v /var/log:/var/log -v /etc/machine-id:/etc/machine-id -v /etc/localtime:/etc/localtime -v /:/host quay.io/pbench/pbench-agent-all-centos-8






Note

The volumes and config shown in the command snippet above may vary depending on users needs.



Possibilities are endless, please give it a try https://quay.io/organization/pbench.




            

          

      

      

    

  

    
      
          
            
  
RPM based installation

The Pbench Agent requires the installation of some generic bits, but it also
requires some localization. It needs to know where to send the results for
storage and analysis, and it needs to be able to authenticate to the results
server.

The generic bits are packaged as an RPM, available from
COPR [https://copr.fedorainfracloud.org/coprs/ndokos].
Pbench Agent is built for all major releases of
Fedora, RHEL, CentOS and openSUSE.

In the following, we describe how to install Pbench Agent using an RPM.


Setup


	Enable required repos.

dnf copr enable ndokos/pbench-0.72
dnf copr enable ndokos/pbench






Note


	We release Pbench Agent RPMs under the ndokos COPR account with repos following the pattern pbench-<release>.


	There are some RPMs that are shared between versions (e.g. pbench-sysstat). We maintain those in ndokos/pbench [https://copr.fedorainfracloud.org/coprs/ndokos/pbench] repo.


	On a RHEL-based system enable the subscription manager and enable the EPEL repo.








	Install Pbench Agent package

dnf install pbench-agent







	Restart terminal/shell session so that all environment varibales and PATH variables are updated

or

source /etc/profile.d/pbench-agent.sh













            

          

      

      

    

  

    
      
          
            
  
Ansible based installation

In the following: we describe how to install Pbench Agent using an ANSIBLE playbook.


Note

The same Pbench Agent version must be installed on all the test systems that participate in a benchmark run, there is no support for mixed installations.




Setup


	Make sure that you have the ANSIBLE package installed.


	Install the pbench.agent ANSIBLE collection from Ansible Galaxy.




ansible-galaxy collection install pbench.agent






	Tell ansible where to find these roles.




export ANSIBLE_ROLES_PATH=$HOME/.ansible/collections/ansible_collections/pbench/agent/roles:$ANSIBLE_ROLES_PATH






	Create an inventory file (~/.config/Inventory/myhosts.inv) naming the hosts on which you wish to install Pbench Agent and the location of the config file. Example inventory file.





Note

if you’re planning to push performance data to a 0.69 Pbench Server, you need to specify the server’s private RSA key. Example inventory file.




	Use the example playbook [https://github.com/distributed-system-analysis/pbench/blob/main/agent/ansible/playbooks/pbench_agent_install.yml] or reference it to customize your own.


	Run the playbook.




ansible-playbook -i ~/.config/Inventory/myhosts.inv pbench_agent_install.yml









            

          

      

      

    

  

    
      
          
            
  
User Guide



	Getting Started
	Installation

	Tool Registration

	Running a Benchmark





	User Guide
	What is Pbench?

	TL;DR - How to set up Pbench and run a benchmark

	How to install

	Defaults

	Available tools

	Available benchmark scripts

	Utility Scripts

	Second Steps

	Running Pbench collection tools with an arbitrary benchmark

	Remote hosts

	Customizing

	Results handling

	Advanced topics





	Man pages
	Commands by functional group

	Commands





	End-to-End Workflow








            

          

      

      

    

  

    
      
          
            
  
Getting Started

The following is an introduction on how to use the pbench agent.

Pbench can be used to either automate tool execution and postprocessing for
you, or also run any of its built-in benchmark scripts.  This first test will
run the fio benchmark.


Installation

If you have not done so, install pbench-agent (via RPM or other Linux
distribution supported method, documented in INSTALL file).

After pbench-agent is installed, verify that your path includes:

/opt/pbench-agent:/opt/pbench-agent/util-scripts:/opt/pbench-agent/bench-scripts





If you do not have this, you may need to source your .bashrc, re-log in, or
just run, . /opt/pbench-agent/profile to have the path updated.



Tool Registration

After you are certain the path is updated, register the default set of tools:

register-tool-set





This command will register the default tool set, which consists of sar,
mpstat, iostat, pidstat, proc-vmstat, proc-interrupts, and perf.

When registering these tools, pbench-agent checks if they are installed and
may install some of them if they are not present.  Some of these tools are
built from source, so you may see output from fetching the source and
compiling.  Following any installation, you should have this output:

sar tool is now registered in group default
[debug]tool_opts: default --interval="3"
[debug]checking to see if tool is installed...
iostat is installed
iostat tool is now registered in group default
[debug]tool_opts: default --interval="3"
[debug]checking to see if tool is installed...
mpstat is installed
mpstat tool is now registered in group default
[debug]tool_opts: default --interval="3"
[debug]checking to see if tool is installed...
pidstat is installed
pidstat tool is now registered in group default
[debug]tool_opts: default --interval="3"
[debug]checking to see if tool is installed...
proc-vmstat tool is now registered in group default
[debug]tool_opts: default --interval="3"
[debug]checking to see if tool is installed...
proc-interrupts tool is now registered in group default
[debug]tool_opts: default --record-opts="record -a --freq=100"
[debug]checking to see if tool is installed...
perf tool is now registered in group default





If at any time you are unsure which tools are registered, you can run:

# list-tools
default: perf,proc-interrupts,proc-vmstat,pidstat,mpstat,iostat,sar





The output above shows which tools are in the “default” tool group.  And by
specifying the --with-options switch, you get the options used for these
tools:

# list-tools --with-options
default: perf --record-opts="record -a --freq=100",proc-interrupts --interval="3",
proc-vmstat --interval="3",pidstat --interval="3",mpstat --interval="3",iostat --interval="3",sar --interval="3"





In the above example, the --interval option is set for all tools but perf.
Optioonally, you can change these individually with the register-tool command:

# register-tool --name=pidstat -- --interval=10
[debug]tool_opts: --interval="10"
[debug]checking to see if tool is installed...
pidstat is installed
pidstat tool is now registered in group default





Then run list-tools --with-options again to confirm:

# list-tools --with-options
default: pidstat --interval="10",perf --record-opts="record -a --freq=100",
proc-interrupts --interval="3",proc-vmstat --interval="3",mpstat --interval="3",iostat --interval="3",sar --interval="3"





And the interval for pidstat is now 10.



Running a Benchmark

OK, now that the tools are registered, it’s time the run the benchmark. We’ll
use the fio benchmark for this exmaple. To run, simply type ‘pbench_fio’,
the wrapper script pbench-agent provides for the fio benchmark.

If this is the first time running fio via the pbench-agent, pbench-agent
will attempt to download and compile fio.  You may see quite a bit of output
from this.  Once fio is installed, pbench-agent will run several tests by
default.  Output for each will look something like this:

about to run fio read with 4 block size on /tmp/fio
--------fio will use this job file:--------
[global]
bs=4k
ioengine=libaio
iodepth=32
direct=1
time_based=1
runtime=30
[job1]
rw=read
filename=/tmp/fio
size=896M
-------------------------------------------





Right before the pbench_fio script starts a fio job, it will call
start-tools, which will produce output like this:

[debug][start-tools]/opt/pbench-agent/tool-scripts/sar --start --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug][start-tools]/opt/pbench-agent/tool-scripts/iostat --start --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug][start-tools]/opt/pbench-agent/tool-scripts/mpstat --start --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug][start-tools]/opt/pbench-agent/tool-scripts/pidstat --start --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug][start-tools]/opt/pbench-agent/tool-scripts/proc-vmstat --start --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug][start-tools]/opt/pbench-agent/tool-scripts/proc-interrupts --start --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug][start-tools]/opt/pbench-agent/tool-scripts/perf --start --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --record-opts="record -a --freq=100"





That is output from start-tools starting all of the tools that were
registered.

Next is the output from the actual fio job:

fio: Going to run [/usr/local/bin/fio /var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/fio.job]
job1: (g=0): rw=read, bs=4K-4K/4K-4K/4K-4K, ioengine=libaio, iodepth=32
fio-2.1.7
Starting 1 process
job1: Laying out IO file(s) (1 file(s) / 896MB)

job1: (groupid=0, jobs=1): err= 0: pid=12961: Thu Sep 11 12:55:47 2014
  read : io=1967.4MB, bw=67147KB/s, iops=16786, runt= 30003msec
    slat (usec): min=3, max=77, avg= 7.95, stdev= 2.45
    clat (msec): min=1, max=192, avg= 1.90, stdev= 1.48
     lat (msec): min=1, max=192, avg= 1.90, stdev= 1.48
    clat percentiles (usec):
     |  1.00th=[ 1736],  5.00th=[ 1736], 10.00th=[ 1752], 20.00th=[ 1752],
     | 30.00th=[ 1768], 40.00th=[ 1768], 50.00th=[ 1768], 60.00th=[ 1912],
     | 70.00th=[ 1912], 80.00th=[ 2064], 90.00th=[ 2096], 95.00th=[ 2224],
     | 99.00th=[ 2256], 99.50th=[ 2256], 99.90th=[10304], 99.95th=[10816],
     | 99.99th=[44800]
    bw (KB  /s): min=34373, max=70176, per=100.00%, avg=67211.32, stdev=5212.44
    lat (msec) : 2=78.09%, 4=21.73%, 10=0.05%, 20=0.10%, 50=0.01%
    lat (msec) : 100=0.01%, 250=0.01%
  cpu          : usr=5.97%, sys=22.23%, ctx=501089, majf=0, minf=332
  IO depths    : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=0.1%, 32=100.0%, >=64=0.0%
     submit    : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
     complete  : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.1%, 64=0.0%, >=64=0.0%
     issued    : total=r=503651/w=0/d=0, short=r=0/w=0/d=0
     latency   : target=0, window=0, percentile=100.00%, depth=32

Run status group 0 (all jobs):
   READ: io=1967.4MB, aggrb=67146KB/s, minb=67146KB/s, maxb=67146KB/s, mint=30003msec, maxt=30003msec

Disk stats (read/write):
    dm-1: ios=501328/154, merge=0/0, ticks=947625/12780, in_queue=960429, util=99.53%, aggrios=503626/101, aggrmerge=25/55, aggrticks=949096/9541, aggrin_queue=958491, aggrutil=99.49%
  sda: ios=503626/101, merge=25/55, ticks=949096/9541, in_queue=958491, util=99.49%





Now that this fio job is complete, the pbench_fio script calls stop-tools:

[debug][stop-tools]/opt/pbench-agent/tool-scripts/sar --stop --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug][stop-tools]/opt/pbench-agent/tool-scripts/iostat --stop --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug]stopping sar
[debug][stop-tools]/opt/pbench-agent/tool-scripts/mpstat --stop --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug]stopping iostat
[debug][stop-tools]/opt/pbench-agent/tool-scripts/pidstat --stop --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug]stopping mpstat
[debug][stop-tools]/opt/pbench-agent/tool-scripts/proc-vmstat --stop --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug]stopping pidstat
[debug][stop-tools]/opt/pbench-agent/tool-scripts/proc-interrupts --stop --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug]stopping proc-vmstat
[debug][stop-tools]/opt/pbench-agent/tool-scripts/perf --stop --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --record-opts="record -a --freq=100"
[debug]stopping proc-interrupts
waiting for PID 12934 (perf) to finish





Next, pbench_fio calls postprocess-tools. This is what generates the
.csv files and renders the .html file containing the NVD3 graphs for the
tool data.

collecting /proc
collecting /sys
[debug][postprocess-tools]/opt/pbench-agent/tool-scripts/sar --postprocess --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug][postprocess-tools]/opt/pbench-agent/tool-scripts/iostat --postprocess --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug][postprocess-tools]/opt/pbench-agent/tool-scripts/mpstat --postprocess --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug]postprocessing iostat
[debug][postprocess-tools]/opt/pbench-agent/tool-scripts/pidstat --postprocess --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug]postprocessing mpstat
[debug][postprocess-tools]/opt/pbench-agent/tool-scripts/proc-vmstat --postprocess --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug]postprocessing pidstat
[debug][postprocess-tools]/opt/pbench-agent/tool-scripts/proc-interrupts --postprocess --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --interval="3"
[debug]postprocessing proc-vmstat
[debug][postprocess-tools]/opt/pbench-agent/tool-scripts/perf --postprocess --iteration=1-read-4KiB --group=default --dir=/var/lib/pbench/fio__2014-09-11_12:54:42/1-read-4KiB/tools-default default --record-opts="record -a --freq=100"
[debug]postprocessing proc-interrupts





This will repeat for a total of 6 different fio jobs, then the fio
benchmark will be complete.  Now that the job is complete, we want to move
the results to the archive host.  The results are currently in
/var/lib/pbench/fio-.  To move these results, simply run:
  
    
    

    User Guide
    

    

    

    
 
  

    
      
          
            
  
User Guide


Contents


	User Guide


	What is Pbench?


	TL;DR - How to set up Pbench and run a benchmark


	How to install


	Defaults


	Available tools


	Available benchmark scripts


	pbench-fio


	pbench-linpack


	pbench-specjbb2005


	pbench-uperf


	pbench-user-benchmark






	Utility Scripts


	Second Steps


	Benchmark scripts options


	Collection tools options


	Utility script options






	Running Pbench collection tools with an arbitrary benchmark


	Remote hosts


	Multihost benchmarks






	Customizing


	Results handling


	Accessing results on the web


	Where to go to see results






	Advanced topics


	Triggers















What is Pbench?

Pbench is a harness that allows data collection from a variety of tools while running a benchmark. Pbench has some built-in scripts
that run some common benchmarks, but the data collection can be run separately as well with a benchmark that is not built-in to
Pbench, or a Pbench script can be written for the benchmark. Such contributions are more than welcome!



TL;DR - How to set up Pbench and run a benchmark

Prerequisite: Somebody has already done the server setup.

The following steps assume that only a single node participates in the benchmark run. If you want a multi-node setup, you have to
read up on the –remote options of various commands (in particular, pbench-register-tool-set):


	Install the agent [https://distributed-system-analysis.github.io/pbench/start.html]


	Customize the agent for your server environment. This will vary from installation to installation, but it fundamentally involves
copying two files that should be made available to you somehow by an admin type: an ssh private key file to allow the client(s) to
send results to the server and a configuration file that should be installed in /opt/pbench-agent/config/pbench-agent.cfg .
There is an example configuration file in that location, but you need the “real” one for your environment. Among other things,
the config file specifies the IP or hostname of the server.


	Run your benchmark with a default set of tools:

. /etc/profile.d/pbench-agent.sh         # or log out and log back in
pbench-register-tool-set
pbench-user-benchmark -C test1 -- ./your_cmd.sh
pbench-move-results







	Visit the Results URL in your browser to see the results: the URL depends on the server hostname or IP”; assuming that the server
is “pbench.example.com” and assuming you ran the above on a host named “myhost”, the results will be found at (N.B.: this is
a fake link serving as an example only - talk to your local administrator to find out what server to use to get to Pbench results):
http://pbench.example.com/results/myhost/pbench-user-benchmark_test1_yyyy-mm-dd_HH:MM:SS.




For explanations and details, see subsequent sections.



How to install

See the install section [https://distributed-system-analysis.github.io/pbench/start.html] for details.



Defaults

The benchmark scripts source the base script (/opt/pbench-agent/base) which sets a bunch of defaults:

pbench_run=/var/lib/pbench-agent
pbench_log=/var/lib/pbench-agent/pbench.log
date=`date "+%F_%H:%M:%S"`
hostname=`hostname -s`
results_repo=pbench@pbench.example.com
results_repo_dir=/pbench/public_html/incoming
ssh_opts='-o StrictHostKeyChecking=no'





These are now specified in the config file /opt/pbench-agent/config/pbench-agent.cfg.



Available tools

The configured default set of tools (what you would get by running pbench-register-tool-set) is:


	sar, iostat, mpstat, pidstat, proc-vmstat, proc-interrupts, perf




In addition, there are tools that can be added to the default set with pbench-register-tool:


	blktrace, cpuacct, dm-cache, docker, kvmstat, kvmtrace, lockstat, numastat, perf, porc-sched_debug, proc-vmstat, qemu-migrate,
rabbit, strace, sysfs, systemtap, tcpdump, turbostat, virsh-migrate, vmstat




There is a default group of tools (that’s what pbench-register-tool-set uses), but tools can be registered in other groups using
the –group option of pbench-register-tool. The group can then be started and stopped using pbench-start-tools and pbench-stop-tools
using their –group option.

Additional tools can be registered:

pbench-register-tool --name blktrace





or unregistered (e.g. some people prefer to run without perf):

pbench-unregister-tool --name perf





Note that perf is run in a “low overhead” mode with options “record -a –freq=100”, but if you want to run it differently, you can
always unregister it and register it again with different options:

pbench-unregister-tool --name=perf
pbench-register-tool --name=perf -- --record-opts="record -a --freq=200"





Tools can be also be registered, started and stopped on remote hosts (see the –remote option described in What does –remote do?
in FAQ section [https://distributed-system-analysis.github.io/pbench/learn.html#faq].



Available benchmark scripts

Pbench provides a set of pre-packaged scripts to run some common benchmarks using the collection tools and other facilities that
pbench provides. These are found in the bench-scripts directory of the Pbench installation (/opt/pbench-agent/bench-scripts by
default). The current set includes:


	pbench fio


	pbench-linpack


	pbench-specjbb2005


	pbench-uperf


	pbench-user-benchmark (see Running Pbench collection tools with an arbitrary benchmark below for more on this)




You can run any of these with the –help option to get basic information about how to run the script. Most of these scripts accept
a standard set of generic options, some semi-generic ones that are common to a bunch of benchmarks, as well as some benchmark
specific options that vary from benchmark to benchmark.

The generic options are:







	–help

	show the set of options that the benchmark accepts.



	–config

	the name of the testing configuration (user specified).



	–tool-group

	the name of the tool group specifying the tools to run during execution of the benchmark.



	–install

	just install the benchmark (and any other needed packages) - do not run the benchmark.






The semi-generic ones are:







	–test-types

	the test types for the given benchmark - the values are benchmark-specific and can be obtained using –help.



	–runtime

	maximum runtime in seconds.



	–clients

	list of hostnames (or IPs) of systems that run the client (drive the test).



	–samples

	the number of samples per iteration.



	–max-stddev

	the percent maximum standard deviation allowed in order to consider the iteration to pass.



	–max-failures

	the maximum number of failures to achieve the allowed standard deviation.



	–postprocess-only

	


	–run-dir

	


	–start-iteration-num

	


	–tool-label-pattern

	





Benchmark-specific options are called out in the following sections for each benchmark.

Note that in some of these scripts the default tool group is hard-wired: if you want them to run a different tool group, you need
to edit the script.


pbench-fio

Iterations are the cartesian product targets X test-types X block-sizes. More information on many of the following can be obtained
from the fio man page.







	–direct

	O_DIRECT enabled or not (1/0) - default is 1.



	–sync

	O_SYNC enabled or not (1/0) - default is 0.



	–rate-iops

	IOP rate not to be exceeded (per job, per client)



	–ramptime

	seconds - time to warm up test before measurement.



	–block-sizes

	list of block sizes - default is 4, 64, 1024.



	–file-size

	fio will create files of this size during the job run.



	–targets

	file locations (list of directory/block device).



	–job-mode

	serial/concurrent - default is concurrent.



	–ioengine

	any IO engine that fio supports (see the fio man page) - default is psync.



	–iodepth

	number of I/O units to keep in flight against the file.



	–client-file

	file containing list of clients, one per line.



	–numjobs

	number of clones (processes/threads performing the same workload) of this job
- default is 1.



	–job-file

	if you need to go beyond the recognized options, you can use a fio job file.



	–unique-ports

	use different ports for each client (needed if e.g. multiple clients on one
system)








pbench-linpack


Note

TBD





pbench-specjbb2005


Note

TBD





pbench-uperf






	–kvm-host



	–message-sizes



	–protocols



	–instances



	–servers



	–server-nodes



	–client-nodes



	–log-response-times








pbench-user-benchmark


Note

TBD






Utility Scripts

This section is needed as preparation for the Second Steps section below.

Pbench uses a bunch of utility scripts to do common operations. There is a common set of options for some of these: –name to specify
a tool, –group to specify a tool group, –with-options to list or pass options to a tool, –remote to operate on a remote host
(see entries in the FAQ section [https://distributed-system-analysis.github.io/pbench/learn.html#faq] for more details on these options).

The first set is for registering and unregistering tools and getting some information about them:







	Command

	Description





	pbench-list-tools

	
list the tools in the default group or in the specified group; with the

–name option, list the groups that the named tool is in.

TBD: how do you list all available tools whether in a group or not?






	pbench-register-tool-set

	
call pbench-register-tool on each tool in the default list.






	pbench-register-tool

	
add a tool to a tool group (possibly remotely).






	pbench-unregister-tool (Obsolete)

	
remove a tool from a tool group (possibly remotely).






	pbench-clear-tools

	
remove a tool or all tools from a specified tool group (including

remotely). Used with a –name option, it replaces pbench

-unregistered-tool.









The second set is for controlling the running of tools – pbench-start-tools and pbench-stop-tools, as well as pbench-postprocess-
tools below, take –group, –dir and –iteration options: which group of tools to start/stop/postprocess, which directory to use
to stash results and a label to apply to this set of results. pbench-kill-tools is used to make sure that all running tools are
stopped: having a bunch of tools from earlier runs still running has been known to happen and is the cause of many problems
(slowdowns in particular):







	Command

	Description





	pbench-start-tools

	
start a group of tools, stashing the results in the directory specified by –dir.






	pbench-stop-tools

	
stop a group of tools






	pbench-kill-tools

	
make sure that no tools are running to pollute the environment.









The third set is for handling the results and doing cleanup:







	Command

	Description





	pbench-postprocess-tools

	
run all the relevant postprocessing scripts on the tool output - this

step also gathers up tool output from remote hosts to the local host

in preparation for copying it to the results repository.






	pbench-clear-results

	
start with a clean slate.






	pbench-copy-results

	
copy results to the results repo.






	pbench-move-results

	
move the results to the results repo and delete them from the local host.






	pbench-edit-prefix

	
change the directory structure of the results (see the

Accessing results on the web section below for details).






	pbench-cleanup

	
clean up the pbench run directory - after this step, you will need to

register any tools again.









pbench-register-tool-set, pbench-register-tool and pbench-unregister-tool can also take a –remote option (see What does –remote
do?) in FAQ section [https://distributed-system-analysis.github.io/pbench/learn.html#faq] in order to allow the starting/stopping of tools and the postprocessing of results on multiple remote hosts.

There is a set of miscellaneous tools for doing various and sundry things - although the name of the script indicates its purpose,
if you want more information on these, you will have to read the code:


	pbench-log-timestamp




These are used by various pieces of Pbench. There is also a contrib directory that contains completely unsupported tools that
various people have found useful.



Second Steps


Warning

It is highly recommended that you use one of the pbench-< benchmark> scripts for running your benchmark. If one does not
exist already, you might be able to use the pbench-user-benchmark script to run your own script. The advantage is that these
scripts already embody some conventions that Pbench and associated tools depend on, e.g. using a timestamp in the name of the
results directory to make the name unique. If you cannot use pbench-user-benchmark and a pbench-< benchmark> script does not
exist already, consider writing one or helping us write one. The more we can encapsulate all these details into generally
useful tools, the easier it will be for everybody: people running it will not need to worry about all these details and people
maintaining the system will not have to fix stuff because the script broke some assumptions. The easiest way to do so is to crib
an existing pbench- script, e.g pbench-fio.



Once collection tools have been registered, the work flow of a benchmark script is as follows:


	Process options (see Benchmark scripts options).


	Check that the necessary prerequisites are installed and if not, install them.


	Iterate over some set of benchmark characteristics (e.g. pbench-fio iterates over a couple test types: read, randread and a bunch
of block sizes), with each iteration doing the following:



	create a benchmark_results directory


	start the collection tools


	run the benchmark


	stop the collection tools


	postprocess the collection tools data











The tools are started with an invocation of pbench-start-tools like this:

pbench-start-tools --group=$group --iteration=$iteration --dir=$benchmark_tools_dir





where the group is usually “default” but can be changed to taste as described above, iteration is a benchmark-specific tag that
disambiguates the separate iterations in a run (e.g. for pbench-fio it is a combination of a count, the test type, the block size
and a device name), and the benchmark_tools_dir specifies where the collection results are going to end up (see the section for
much more detail on this).

The stop invocation is parallel, as is the postprocessing invocation:

pbench-stop-tools --group=$group --iteration=$iteration --dir=$benchmark_tools_dir
pbench-postprocess-tools --group=$group --iteration=$iteration --dir=$benchmark_tools_dir






Benchmark scripts options

Generally speaking, benchmark scripts do not take any pbench-specific options except –config (see What does –config do? in FAQ
section [https://distributed-system-analysis.github.io/pbench/learn.html#faq]). Other options tend to be benchmark-specific.



Collection tools options

–help can be used to trigger the usage message on all of the tools (even though it’s an invalid option for many of them). Here
is a list of gotcha’s:


	blktrace: you need to pass –devices=/dev/sda,/dev/sdb when you register the tool:




pbench-register-tool --name=blktrace [--remote=foo] -- --devices=/dev/sda,/dev/sdb





There is no default and leaving it empty causes errors in postprocessing (this should be flagged).



Utility script options

Note that pbench-move-results, pbench-copy-results and pbench-clear-results always assume that the run directory is the default
/var/lib/pbench-agent.

pbench-move-results and pbench-copy-results now (starting with Pbench version 0.31-108gf016ed6) take a –prefix option. This is
explained in the Accessing results on the web section below.

Note also that pbench-start/stop/postprocess-tools must be called with exactly the same arguments. The built-in benchmark scripts
do that already, but if you go your own way, make sure to follow this dictum.

–dir

specify the run directory for all the collections tools. This argument must be used by pbench-start/stop/postprocess-tools,
so that all the results files are in known places:

pbench-start-tools --dir=/var/lib/pbench-agent/foo
pbench-stop-tools --dir=/var/lib/pbench-agent/foo
pbench-postprocess-tools --dir=/var/lib/pbench-agent/foo





–remote

specify a remote host on which a collection tool (or set of collection tools) is to be registered:

pbench-register-tool --name=< tool> --remote=< host>








Running Pbench collection tools with an arbitrary benchmark

If you want to take advantage of Pbench’s data collection and other goodies, but your benchmark is not part of the set above
(see Available benchmark scripts), or you want to run it differently so that the pre-packaged script does not work for you,
that’s no problem (but, if possible, heed the WARNING above). The various Pbench phases can be run separately and you can fit
your benchmark into the appropriate slot:

group=default
benchmark_tools_dir=TBD

pbench-register-tool-set --group=$group
pbench-start-tools --group=$group --iteration=$iteration --dir=$benchmark_tools_dir
< run your benchmark>
pbench-stop-tools --group=$group --iteration=$iteration --dir=$benchmark_tools_dir
pbench-postprocess-tools --group=$group --iteration=$iteration --dir=$benchmark_tools_dir
pbench-copy-results





Often, multiple experiments (or “iterations”) are run as part of a single run. The modified flow then looks like this:

group=default
experiments="exp1 exp2 exp3"
benchmark_tools_dir=TBD

pbench-register-tool-set --group=$group
for exp in $experiments ;do
     pbench-start-tools --group=$group --iteration=$exp
     < run the experiment>
     pbench-stop-tools --group=$group --iteration=$exp
     pbench-postprocess-tools --group=$group --iteration=$exp
done
pbench-copy-results





Alternatively, you may be able to use the pbench-user-benchmark script as follows:

pbench-user-benchmark --config="specjbb2005-4-JVMs" -- my_benchmark.sh





which is going to run my_benchmark.sh in the < run your benchmark> slot above. Iterations and such are your responsibility.

pbench-user-benchmark can also be used for a somewhat more specialized scenario: sometimes you just want to run the collection
tools for a short time while your benchmark is running to get an idea of how the system looks. The idea here is to use pbench-
user-benchmark to run a sleep of the appropriate duration in parallel with your benchmark:

pbench-user-benchmark --config="specjbb2005-4-JVMs" -- sleep 10





will start data collection, sleep for 10 seconds, then stop data collection and gather up the results. The config argument is a
tag to distinguish this data collection from any other: you will probably want to make sure it’s unique.

This works well for one-off scenarios, but for repeated usage on well defined phase changes you might want to investigate Triggers.



Remote hosts


Multihost benchmarks

Usually, a multihost benchmark is run using a host that acts as the “controller” of the run. There is a set of hosts on which
data collection is to be performed while the benchmark is running. The controller may or may not be itself part of that set. In
what follows, we assume that the controller has password-less ssh access to the relevant hosts.

The recommended way to run your workload is to use the generic pbench-user-benchmark script. The workflow in that case is:


	Register the collection tools on each host in the set:




for host in $hosts ;do
    pbench-register-tool-set --remote=$host
done






	Invoke pbench-user-benchmark with your workload generator as argument: that will start the collection tools on all the hosts
and then run your workload generator; when that finishes, it will stop the collection tools on all the hosts and then run the
postprocessing phase which will gather the data from all the remote hosts and run the postprocessing tools on everything.


	Run pbench-copy-results or pbench-move-results to upload the data to the results server.




If you cannot use the pbench-user-benchmark script, then the process becomes more manual. The workflow is:


	Register the collection tools on each host as above.


	Invoke pbench-start-tools on the controller: that will start data collection on all of the remote hosts.


	Run the workload generator.


	Invoke pbench-stop-tools on the controller: that will stop data collection on all of the remote hosts.


	Invoke pbench-postprocess-tools on the controller: that will gather all the data from the remotes and run the postprocessing
tools on all the data.


	Run pbench-copy-results or pbench-move-results to upload the data to the results server.







Customizing

Some characteristics of Pbench are specified in config files and can be customized by adding your own config file to override the
default settings. TBD



Results handling


Accessing results on the web

This section describes how to get to your results using a web browser. It describes how pbench-move-results moves the results
from your local controller to a centralized location and what happens there. It also describes the –prefix option to pbench-move
-results (and pbench-copy-results) and a utility script, pbench-edit-prefix, that allows you to change how the results are viewed.



Where to go to see results

Where pbench-move/copy-results copies the results is site-dependent. Check with the admin who set up the Pbench server and
provided you with the configuration file for the pbench-agent installation.




Advanced topics


Triggers

Triggers are groups of tools that are started and stopped on specific events. They are registered with pbench-register-tool-trigger
using the –start-trigger and –stop-trigger options. The output of the benchmark is piped into the pbench-tool-trigger tool which
detects the conditions for starting and stopping the specified group of tools.

There are some commands specifically for triggers:







	Command

	Description





	pbench-register-tool-trigger

	
register start and stop triggers for a tool group.






	pbench-list-triggers

	
list triggers and their start/stop criteria.






	pbench-tool-trigger

	
this is a Perl script that looks for the start-trigger and end-trigger

markers in the benchmark’s output, starting and stopping the appropriate

group of tools when it finds the corresponding marker.














            

          

      

      

    

  

  
    
    

    Man pages
    

    

    

    
 
  

    
      
          
            
  
Man pages


Commands by functional group


Performance tool management commands


	pbench-clear-results


	pbench-clear-tools


	pbench-list-tools


	pbench-list-triggers


	pbench-register-tool


	pbench-register-tool-set


	pbench-register-tool-trigger






Benchmark commands


	pbench-user-benchmark






Upload to Pbench Server


Pbench Server 0.69

The 0.69 variant of Pbench Server relies on a private id_rsa key for the
Pbench Server’s pbench user in order to upload data to the server using ssh
protocols. Results on the server have no ownership, and are visible to
everyone. Results cannot be deleted except by administrators.


	pbench-move-results


	pbench-copy-results






Pbench Server 1.0

The 1.0 variant of Pbench Server relies on OIDC2 authentication to identify
specific users. Data is uploaded to the server through HTTPS APIs, so that all
results are owned and managed by the individual user. Results can be published
to make them accessible to other users.


	pbench-results-move








Commands




pbench-clear-results



NAME

pbench-clear-results - clears the result directory

SYNOPSIS

pbench-clear-results [OPTIONS]

DESCRIPTION

This command clears the results directories from /var/lib/pbench-agent directory.

OPTIONS

[-C, --config] <path>

Path to the Pbench Agent configuration file.
This option is required if not provided by the _PBENCH_AGENT_CONFIG environment variable.

--help

Show this message and exit.





pbench-clear-tools



NAME

pbench-clear-tools - clear registered tools by name or group

SYNOPSIS

pbench-clear-tools [OPTIONS]

DESCRIPTION

Clear all tools which are registered and can filter by name of the group.

OPTIONS

[-C, --config] <path>

Path to the Pbench Agent configuration file.
This option is required if not provided by the _PBENCH_AGENT_CONFIG environment variable.

[-n, --name, --names] <name>

Clear only the <name> tool.

[-g, --group, --groups] <group>

Clear the tools in the <group>. If no group is specified, the default group is assumed.

[-r, --remote, --remotes] <host>[,<host>]...

Clear the tool(s) only on the specified remote(s). Multiple remotes may be specified as a comma-separated list. If no remote is specified, all remotes are cleared.

--help

Show this message and exit.





pbench-copy-results



NAME

pbench-copy-results - copy result tarball to a Pbench Server

SYNOPSIS

pbench-copy-results --user=<user> [OPTIONS]

DESCRIPTION

Push all accumulated benchmark results to a Pbench Server without removing
them from the local host.

OPTIONS

--user <user>

This option value is required if not provided by the
PBENCH_USER environment variable; otherwise, a value provided
on the command line will override any value provided by the
environment.

--controller <controller>

This option may be used to override the value
provided by the PBENCH_CONTROLLER environment variable; if
neither value is available, the result of hostname -f is used.
(If no value is available, the command will exit with an error.)

--prefix <prefix>

This option allows the user to specify an optional
directory-path hierarchy to be used when displaying the result
files on the Pbench Server.

--show-server

This will not move any results but will resolve and
then display the pbench server destination for results.

--xz-single-threaded

This will force the use of a single
thread for locally compressing the result files.

--help

Show this message and exit.





pbench-list-tools



NAME

pbench-list-tools - list all the registered tools optionally filtered by name or group

SYNOPSIS

pbench-list-tools [OPTIONS]

DESCRIPTION

List tool registrations, optionally filtered by tool name or tool group.

OPTIONS

[-C, --config] <path>

Path to the Pbench Agent configuration file.
This option is required if not provided by the _PBENCH_AGENT_CONFIG environment variable.

[-n, --name] <name>

List the tool groups in which tool <name> is registered.

[-g, --group] <group>

List all the tools registered in the <group>.

-o, --with-option

List the options with each tool.

--help

Show this message and exit.





pbench-list-triggers



NAME

pbench-list-triggers - list the registered triggers by group

SYNOPSIS

pbench-list-triggers [OPTIONS]

DESCRIPTION

This command will list all the registered triggers by group-name.

OPTIONS

[-C, --config] <path>

Path to the Pbench Agent configuration file.
This option is required if not provided by the _PBENCH_AGENT_CONFIG environment variable.

[-g, --group, --groups] <group>

List all the triggers registered in the <group>.

--help

Show this message and exit.





pbench-move-results



NAME

pbench-move-results - move all results to a Pbench Server

SYNOPSIS

pbench-move-results [OPTIONS]

DESCRIPTION

Push all accumulated benchmark results to a Pbench Server. On successful
completion, this command removes the results from the local host.

OPTIONS

--user <user>

This option value is required if not provided by the
PBENCH_USER environment variable; otherwise, a value provided
on the command line will override any value provided by the
environment.

--controller <controller>

This option may be used to override the value
provided by the PBENCH_CONTROLLER environment variable; if
neither value is available, the result of hostname -f is used.
(If no value is available, the command will exit with an error.)

--prefix <prefix>

This option allows the user to specify an optional
directory-path hierarchy to be used when displaying the result
tar balls on the pbench server.

--show-server

This will not move any results but will resolve and
then display the pbench server destination for results.

--xz-single-threaded

This will force the use of a single
thread for locally compressing the result files.

--help

Show this message and exit.





pbench-register-tool



NAME

pbench-register-tool - registers the specified tool

SYNOPSIS

pbench-register-tool --name=<tool-name> [OPTIONS] [-- <tool-specific-options>]

DESCRIPTION

Register the specified tool.
List of available tools:

Transient


	blktrace


	bpftrace


	cpuacct


	disk


	dm-cache


	docker


	docker-info


	external-data-source


	haproxy-ocp


	iostat


	jmap


	jstack


	kvm-spinlock


	kvmstat


	kvmtrace


	lockstat


	mpstat


	numastat


	oc


	openvswitch


	pcp-transient


	perf


	pidstat


	pprof


	proc-interrupts


	proc-sched_debug


	proc-vmstat


	prometheus-metrics


	qemu-migrate


	rabbit


	sar


	strace


	sysfs


	systemtap


	tcpdump


	turbostat


	user-tool


	virsh-migrate


	vmstat




Persistent


	node-exporter


	dcgm


	pcp




For a list of tool-specific options, run:


/opt/pbench-agent/tool-scripts/<tool-name> --help




OPTIONS

--name <tool-name>

<tool-name> specifies the name of the tool to be registered.

[-g, --group, --groups] <group>

Register the tool in <group>. If no group is specified, the default group
is assumed.

[--persistent | --transient]

For tools which can be run as either “transient” (where they are started and
stopped on each iteration) or as “persistent” (where they are started before
the first iteration and run continuously over all iterations), these options
determine how the tool will be run.

Most tools can be run only in one mode, so these options are necessary only
when a tool (such as pcp) can be run in either mode. Specifying a mode the
tool does not support will produce an error.

--no-install

[To be supplied]

--labels=<label>[,<label>]...

Where the list of labels must match the list of remotes.

--remotes <host>[,<host>]... | @<file>

A single remote host, a list of remote hosts (comma-separated, no spaces) or an
“at” sign (@) followed by a filename. In this last case, the file should
contain a list of hosts and their (optional) labels. Each line of the file
should contain a hostname, optionally followed by a label separated by a comma
(,); empty lines are ignored, and comments are denoted by a leading hash
(#), character.

--help

Show this message and exit.





pbench-register-tool-set



NAME

pbench-register-tool-set - register the specified toolset

SYNOPSIS

pbench-register-tool-set [OPTIONS] <tool-set>

DESCRIPTION

Register all the tools in the specified toolset.

Available <tool-set> from /opt/pbench-agent/config/pbench-agent.cfg:


	heavy


	legacy


	light


	medium




OPTIONS

--remotes <host>[,<host>]... | @<file>

Single remote host, a list of remote hosts (comma-separated, no spaces) or an
“at” sign (@) followed by a filename. In this last case, the file should
contain a list of hosts and their (optional) labels. Each line of the file
should contain a hostname, optionally followed by a label separated by a comma
(,); empty lines are ignored, and comments are denoted by a leading hash
(#), character.

[-g, --group] <group>

Register the toolset in <group>. If no group is specified, the default group is assumed.

--labels=<label>[,<label>]...

Where the list of labels must match the list of remotes. If a remotes file is
specified with --remotes @<file> then labels are read from the file instead.

--interval=<interval>

Define a default interval for tools.

--no-install

Don’t check whether the expected tools are installed when registering. This can
lead to unexpected errors later, but may also allow running with nonstandard
tool versions if there are no binary incompatibilities.

--help

Show this message and exit.





pbench-register-tool-trigger



NAME

pbench-register-tool-trigger - register the tool trigger

SYNOPSIS

pbench-register-tool-trigger [OPTIONS]

DESCRIPTION

Register triggers which start and stop data collection for the given tool group.

OPTIONS

[ -C, --config] <path>

Path to the Pbench Agent configuration file.
This option is required if not provided by the _PBENCH_AGENT_CONFIG
environment variable.

[-g, --group, --groups] <group>

Registers the trigger in the <group>. If no group is specified, the default group is assumed.

--start-trigger <string>

[To be supplied]

--stop-trigger <string>

[To be supplied]

--help

Show this message and exit.





pbench-results-move



NAME

pbench-results-move - move results directories to a Pbench Server

SYNOPSIS

pbench-results-move [OPTIONS]

DESCRIPTION

This command uploads all accumulated results to a Pbench Server.

Two modes are supported:


	The results are pushed directly to a Pbench Server using the API Key
authentication token specified by --token and will be owned by that user.
The Pbench Server URI can be specified with --server, or will be defaulted
from the active configuration file.


	The results are pushed to a Relay server rather than directly to a Pbench
Server, and the command will report the URI of a Relay manifest. The Pbench
Server can later be used to pull the results by supplying the full Relay
manifest URI. The Relay server may be located on any network host accessible
to both the Pbench Agent and the Pbench Server to allow uploading results
through a firewall.




On successful completion, the result directories are removed from the local
system unless --no-delete is specified.

OPTIONS

[-C, --config] <path>

Path to the Pbench Agent configuration file.
This option is required if not provided by the _PBENCH_AGENT_CONFIG environment variable.

--relay <relay>

Instead of pushing results directly to a Pbench Server, push them to a Relay
server at the specified address. For example, https://myrelay.example.com.

--server <server>

Override the default server address in the Pbench Agent configuration file and
push results to the specified Pbench Server address. For example,
https://pbench.example.com. This often allows a Pbench Agent to push results
without creating a customized Pbench Agent configuration file.

--controller <controller>

Override the default controller name.

--token <token>

Pbench Server API key [required unless --relay is specified].

--delete | --no-delete

Remove local data after successful copy [default: delete]

--xz-single-threaded

Use single-threaded compression with xz.

--help

Show this message and exit.





pbench-user-benchmark



NAME

pbench-user-benchmark - run a workload and collect performance data

SYNOPSIS

pbench-user-benchmark [OPTIONS] <command-to-run>

DESCRIPTION

Collects data from the registered tools while running a user-specified action. This can be a specific synthetic benchmark workload, a real workload, or simply a delay to measure system activity.

Invoking pbench-user-benchmark with a workload generator as an argument will perform the following steps:


	Start the collection tools on all the hosts.


	Execute the workload generator.


	Stop the collection tools on all the hosts.


	Gather the data from all the remote hosts and generate a result.txt file by running the tools’ post-processing on the collected data.




<command-to-run>

A script, executable, or shell command to run while gathering tool data. Use --
to stop processing of pbench-user-benchmark options if your command includes
options, like


pbench-user-benchmark --config string -- fio --bs 16k




OPTIONS

[-C, --config] <path>

Path to the Pbench Agent configuration file.
This option is required if not provided by the _PBENCH_AGENT_CONFIG environment variable.

--tool-group <tool-group>

The tool group to use for data collection.

--iteration-list <file>

A file containing a list of iterations to run for the provided script. The file
must contain one iteration per line. Empty lines are ignored, and comments are
denoted by a leading hash (#) character. Each iteration line should use
alpha-numeric characters before the first space to name the iteration, with the
rest of the line provided as arguments to the script.

NOTE: –iteration-list is not compatible with –use-tool-triggers.

--sysinfo <module>[,<module>]...

Comma-separated values of system information to be collected; available:
default, none, all, ara, block, insights, kernel_config,
libvirt, security_mitigations, sos, stockpile, topology

--pbench-pre <pre-script>

Path to the script which will be executed before tools are started.

NOTE: –pbench-pre is not compatible with –use-tool-triggers.

--pbench-post <post-script>

Path to the script which will be executed after tools are stopped and
postprocessing is complete.

NOTE: –pbench-post is not compatible with –use-tool-triggers.

--use-tool-triggers

Use tool triggers instead of normal start/stop sequence when starting and
stopping iterations.

Tool triggers allow starting and stopping tool data collection based on data
in the <command-to-run> output stream to allow collecting data over parts
of the execution, dynamically.

NOTE: –use-tool-triggers is not compatible with –iteration-list,
–pbench-pre, or –pbench-post.

[TODO: Document the register/list tool trigger commands]

--no-stderr-capture

Do not capture the standard error output of the script in the result.txt file

--help

Show this message and exit.






            

          

      

      

    

  

  
    
    

    End-to-End Workflow
    

    

    

    
 
  

    
      
          
            
  
End-to-End Workflow

Each command in pbench-agent accepts the --help option and outputs a brief usage message

The default set of tools for data collection can be enabled with

$pbench-register-tool-set





To list all your registered tools

$pbench-list-tools





You may then perform a built-in benchmark by running it’s Pbench script

$pbench-user-benchmark – sleep 10





The above command will collect data from the registered tools for the specified time period and save it in the /var/lib/pbench-agent directory.

To move the results, the outcomes are tarred and sent to the configured pbench-server with

$pbench-results-move








            

          

      

      

    

  

  
    
    

    FAQ
    

    

    

    
 
  

    
      
          
            
  
FAQ




            

          

      

      

    

  

  
    
    

    Pbench Server API documentation
    

    

    

    
 
  

    
      
          
            
  
Pbench Server API documentation

The Pbench Server API provides the interface to Pbench data for use by the UI
dashboard as well as any other web clients.

The Pbench Server provides a set of HTTP endpoints to manage user
authentication and curated performance information, called “dataset resources”
or just “datasets”.

The V1 API provides a REST-like functional interface.

The Pbench Server APIs accept parameters from a variety of sources. See the
individual API documentation for details.


	Some parameters, especially “resource ids”, are embedded in the URI, such as
/api/v1/datasets/<resource_id>;


	Some parameters are passed as query parameters, such as
/api/v1/datasets?name:fio;


	For PUT and POST APIs, parameters may also be passed as a JSON
(application/json content type) request payload, such as
{"metadata": {"dataset.name": "new name"}}







            

          

      

      

    

  

  
    
    

    Pbench Dashboard
    

    

    

    
 
  

    
      
          
            
  
Pbench Dashboard

Pbench Dashboard is the web-based platform for consuming indexed performance benchmark data. It provides data curation capabilities for the performance datasets.

The landing page is the browsing page where the user can view the list of public datasets. Those datasets can be filtered based on name and/or uploaded time.

[image: Browsing Page]

Login button can be found on the right side of the Header. Clicking on it will redirect the browser to the login page.

On logging in, the user can view the Overview Page which is the data curation page.
It has three components.


	New and Unmanaged Runs shows the newly created runs which can be saved


	Saved Runs lists the saved runs which can be published to share with others


	Expiring Runs lists the saved runs which will be deleted from the server within the next 20 days




[image: Overview]

The User Profile page can be used to view profile information from the OIDC authentication as well as to view and manage Pbench Server API keys. This page is accessed by selecting the My profile option from the dropdown menu activated by clicking on the username at the right end of the header bar.

From this page, Pbench Server API keys can be created by clicking on the New API Key button; existing keys are listed with their labels and creation dates; and, the keys can be copied or deleted using the icon buttons.

[image: User Profile]




            

          

      

      

    

  

  
    
    

    FAQ
    

    

    

    
 
  

    
      
          
            
  
FAQ




            

          

      

      

    

  

  
    
    

    Guidelines for Contributing to Pbench
    

    

    

    
 
  

    
      
          
            
  
Guidelines for Contributing to Pbench


1. Forking the repository:

[image: Image]

Forking a repository allows you to freely experiment with changes without affecting the original project. Most commonly, forks are used to either propose changes to someone else’s project or to use someone else’s project as a starting point for your own idea.



2. Cloning

Cloning is used to create a local copy of the repository. It takes only one command in the terminal to clone the repository.

git clone https://github.com/distributed-system-analysis/pbench.git







3. Choosing an issue to work upon


	Go to the issues section, to find a list of open issues.




[image: Image]


	Select the issues you are interested to work upon based upon the labels and descriptions.




[image: Image]


	It is a good practice to assign the issue to yourself to let others know you’re working upon it.




[image: Image]



Making changes to the codebase


	Follow the instructions in the README.md to setup and install pbench.


	Save your changes by creating your own local branches on git






Add, Commit and Push


	Follow these commands to push the changes to your branch.




git add .
git commit -m "Issue solved"
git push origin branch_name







Conventions on commits, PRs, and overall git best practices.


	Commit messages should have a short description (50 - 70 characters) followed by a longer format description of the changes below if needed. You’ll also notice each line is formatted for a specific length in the longer format description. For example:




Extend auditing to incoming, results, and users

The server audit is now applied to the incoming, results, and users
directory hierarchies.  Any unpacked tar ball should now be compre-
hensively checked to see that all is in the correct place.

The test-20 unit test gold file holds an example of an audit report
covering all the possible outputs it can emit.  Each unit test runs
the report as well, and they have been updated accordingly.






	For more on best practices, check out this article for reference from time to time: https://www.git-tower.com/learn/git/ebook/en/command-line/appendix/best-practices






Opening a pull request


	If there are multiple commits, squash down the commits to one


	For more complicated commits it is appropriate to have more than one


	Commit the changes


	Click on New Pull Request


	Write appropriate Pull Request Title stating the fix


	Use present tense (ex. Fixes, Changes, Fixing, Changing..)


	Reference the issue that the PR is fixing with “Fixes #issue_number” in the description


	Provide a detailed description of the changes; if UI related, add screenshots


	Make sure that the branches can be automatically merged (otherwise rebase the PR with master) and then click the drop down next to, Create pull request, and select Create draft pull request
[image: Image]


	Assign the PR to yourself and add appropriate labels


	Add “DO NOT MERGE” label if the work does not need to be merged or there is no agreement on the work yet


	Make sure to add Milestone to the PR to mention specific release


	Request for review once the work is ready for getting reviewed
[image: Image]


	Select the Ready for Review button to move the PR out of Draft mode indicating it is ready for review and merging






Creating an Isssue


	Make sure to add proper details to the Issue raised


	Upload screenshot(if possible) in dashboard issues


	Apply proper labels to the Issue


	Try to actively respond to the communication in case of comments in the same issue.






Reviewing a pull request


	Go to Files changed and check for the fixes proposed by the Pull Request


	Check for certain general criteria:


	The PR has no merge conflicts with the base branch


	The commits are squashed into one


	There is proper indentation and alignment


	No additional lines are added unnecessarily


	The code is clearly understandable, with comments if necessary to clarify


	Do not merge the PR with DO NOT MERGE or WIP label.


	In case of the requirement of running the changes in the PR on the local system, follow the mentioned process:





	To fetch a remote PR into your local repo,




git fetch origin pull/ID/head:BRANCHNAME
where ID is the pull request id and BRANCHNAME is the name of the new branch that you want to create. Once you have created the branch, then simply
git checkout BRANCHNAME






	If modification is required, then either “Request changes” or add “General comments” for your feedback


	For more information about reviewing PR in github go through:
https://help.github.com/en/articles/about-pull-request-reviews
https://help.github.com/en/articles/reviewing-proposed-changes-in-a-pull-request








            

          

      

      

    

  

  
    
    
    Index
    

    

    

    
 
  

    
      
          
            

Index



 




            

          

      

      

    

  

  
    
    

    Getting Started
    

    

    

    
 
  

    
      
          
            
  
Getting Started

By default, pbench benchmarks collect configuration data of a system, stored in the sysinfo top level directory of a pbench result, collected at the beginning and end of a benchmark (with one exception, pbench-user-benchmark only collects at the end).

The structure of the sysinfo directory in a pbench result, for example,  /var/lib/pbench-agent/pbench_userbenchmark_example_2019.07.18T12.00.00/ is given below followed by a brief explanation of each different type of configuration data.


	sysinfo


	end


	hostname


	block-params.log


	config-5.0.17-300.fc30.x86_64


	libvirt/


	lstopo.txt


	security-mitigation-data.txt


	sosreport-localhost-localhost-pbench-2019-06-10-mrqgzbh.tar.xz


	sosreport-localhost-localhost-pbench-2019-06-10-mrqgzbh.tar.xz.md5

















config-[kernel_version]

The file contains kernel configuration data.

The data is collected using pbench-sysinfo-dump#L43 [https://github.com/distributed-system-analysis/pbench/blob/main/agent/util-scripts/tool-meister/pbench-sysinfo-dump#L43]. The script uses uname system utility (systemcall is a term used for all the APIs provided by the kernel) to collect kernel release information and then checks if a corresponding kernel configuration file exists on the system. If it does, the script simply copies the file, located in /boot directory, to the sysinfo directory.

The file contains data in a key value format where the key is a metric name and the value can be a string literal or a number. The keys and the values are separated by an equality sign.



security-mitigation-data.txt

The file contains CPU vulnerabilities data and RHEL-specific flag settings.

The data is collected using pbench-sysinfo-dump#L50 [https://github.com/distributed-system-analysis/pbench/blob/main/agent/util-scripts/tool-meister/pbench-sysinfo-dump#L50]. The script checks if /sys/devices/system/cpu/vulnerabilities directory exists. If it does, the script prints the filenames and the contents of all the files located in the directory. After that, it repeats the same steps for the /sys/kernel/debug/x86 directory.

The file contains data in a key value format where the key is a file name and the value is the content of the file.



libvirt/

The directory provides information about libvirt, an open-source API, daemon and management tool for managing platform virtualization.

The data is collected using pbench-sysinfo-dump#L67 [https://github.com/distributed-system-analysis/pbench/blob/main/agent/util-scripts/tool-meister/pbench-sysinfo-dump#L67]. The script copies libvirt files located at /var/log/libvirt and /etc/libvirt directories to the sysinfo/libvirt/log and sysinfo/libvirt/etc directories respectively. Only the files whose name follows the regex *.log are copied from the /var/log/libvirt directory.



lstopo.txt

The file provides information about the topology of the system.

The data is collected using pbench-sysinfo-dump#L77 [https://github.com/distributed-system-analysis/pbench/blob/main/agent/util-scripts/tool-meister/pbench-sysinfo-dump#L77]. The script executes the command lstopo --of txt and dumps its output into a text file only if /usr/bin/lstopo file exists on the system.



block-params.log

The file provides information about block devices.

The data is collected using pbench-sysinfo-dump#L84 [https://github.com/distributed-system-analysis/pbench/blob/main/agent/util-scripts/tool-meister/pbench-sysinfo-dump#L84]. The script loops over all the files which satisfy the regex: /sys/block/[s,h,v]d\*[a-z]/ and prints each file name along with the contents of the file.

The file contains data in a key value format where the key is the file name and the value is the content of the file..



sosreport tarball (e.g. sosreport-localhost-localhost-pbench-2019-05-29-rtvzlke.tar.xz)

The tarball contains system configuration and diagnostic information collected by invoking the sosreport command.

The data is collected using pbench-sysinfo-dump#L91 [https://github.com/distributed-system-analysis/pbench/blob/main/agent/util-scripts/tool-meister/pbench-sysinfo-dump#L91]. The script uses sosreport command with different plugins to get the required system information. The resulting tarball contains a number of files copied from the system as well as the output of several commands executed on the system.



insights tarball

The tarball contains system information gathered by the insights-client [https://github.com/RedHatInsights/insights-client].

The data is collected using pbench-sysinfo-dump#L188 [https://github.com/distributed-system-analysis/pbench/blob/main/agent/util-scripts/tool-meister/pbench-sysinfo-dump#L188]. The script uses insights-client command with different options to get the system information. The resulting tarball contains a number of files copied from the system as well as the output of several commands executed on the system.





            

          

      

      

    

  

  
    
    

    Installation
    

    

    

    
 
  

    
      
          
            
  
Installation

NOTE: to install pbench-agent, use the published instructions at https://distributed-system-analysis.github.io/pbench/start.html#install.




            

          

      

      

    

  

  
    
    

    Documentation
    

    

    

    
 
  

    
      
          
            
  
Documentation

PBench website gh-pages [https://distributed-system-analysis.github.io/pbench]
PBench readthedocs self hosted [https://distributed-system-analysis.github.io/pbench/docs] and readthedoc instance [https://pbench.readthedocs.io]

This dir has all the pbench documentation(api, user guide, commands, gh-pages, etc).
Pbench website is hosted on gh-pages and readthedocs pages(/docs) are also hosted along with it.


Readthedocs setup

$ pip3 install -r requirements.txt
$ make clean
$ make html






Note:  Above command will build your static readthedocs page/website in _build/html dir.






Some important links


	online markdown editor [https://pandao.github.io/editor.md/en.html]


	myst-parser [https://myst-parser.readthedocs.io/en/latest/syntax/optional.html] is a plugin used to build our markdown documentation.








            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  myst-parser
sphinx-copybutton
sphinx-rtd-theme
sphinx-design



            

          

      

      

    

  

  
    
    

    Configuration
    

    

    

    
 
  

    
      
          
            
  
Configuration

Note: This Documentation is only required for administrative purposes.
By Default the collected results are moved to pbench-server.


Configure with Server < 1.0

For the purpose of defining the required configuration, a pbench-agent configuration file must be created. The config file and the ssh key file must be present in the specified place for the ansible roles to function.

The installation includes a sample configuration file at ‘/opt/pbench-agent/config/pbench-agent.cfg’. Make a backup of this file, then update the lines marked with # CHANGE ME! comments to suit your setup. Please make sure to make this file accessible to users.

The ssh key pair can be generated with:

ssh-keygen -t rsa





with an empty passphrase. The private key must be made available to users before they can complete the installation of pbench-agent as stated above. The authorized_keys list should include the public key.



Configure with Server 1.0 or above

For the purpose of defining the required configuration, a pbench-agent configuration file must be created. The pbench-agent installation contains an example configuration file at ‘/opt/pbench-agent/config/pbench-agent.cfg’. Make a backup copy of this file, update the lines marked with # CHANGE ME! comments to suit your configuration. Please make sure to make this file accessible to users.





            

          

      

      

    

  

  
    
    

    There can be many, many layers of proxies through
    

    

    

    
 
  

    
      
          
            
  title Operation of Reverse Proxies with the Pbench Server

entryspacing 1.5


There can be many, many layers of proxies through



requests are made to the Pbench Server.  The



current Pbench Server “in-a-can”, and our plans



to deploy in a “production” environment, leverage



a reverse proxy so that serving files from disk



can be handled by the reverse proxy (for which it



is designed, where Gunicorn is not), while



seemlessly integrating the Gunicorn instance,



serving the Pbench Server APIs, behind a single



host name and port number.



A reverse proxy server is also useful for other



operations as well, such as caching frequently



accessed web pages, terminating SSL connections



(often one certificate can be setup for the



reverse proxy handling all services used),



or insulating the server from various service



attacks (Slow Loris [1], other DDoS attacks [2]).







[1] https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/



[2] https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/

participant Client
participant Proxy
participant Server

==Simple transfer, no proxy==

note left of Client:Typical HTTP(S) client/server exchange\nfor a small PUT operation
Client->Server:Open connection
activate Client
activate Server
Client->Server:Send header, PUT op, CONTENT_LENGTH 5,730
Client->Server:Send body (5,730)
Server->Client:Send response, OK 200
deactivate Server
deactivate Client

==Large file transfer, no proxy==

note left of Client:Typical HTTP(s) client/server exchange\n for a very large PUT operation
Client->Server:Open connection
activate Client
activate Server
Client->Server:Send header, PUT op, CONTENT_LENGTH 17,918,719,194
Client->Server:Send partial body (8,192)
Client->Server:Send partial body (8,192)
Client->Server:Send partial body (8,192)
note over Client: …after many packets…
Client->Server:Send partial body (8,192)
Client->Server:Send final body (5,338)
Server->Client:Send response, OK 200
deactivate Server
deactivate Client

==Simple transfer, with proxy, no request buffering==

note left of Client:Typical HTTP(S) client/proxy/server exchange\nfor a small PUT operation
Client->Proxy:Open connection
activate Client
activate Proxy
Client->Proxy:Send header, PUT op, CONTENT_LENGTH 5,730
Proxy->Server:Open connection
activate Server
Proxy->Server:Send modified header, PUT op, CONTENT_LENGTH 5,730
Client->Proxy:Send body (5,730)
Proxy->Server:Send body (5,730)
Server->Proxy:Send response, OK 200
deactivate Server
Proxy->Client:Send modified response, OK 200
deactivate Proxy
deactivate Client

==Large transfer, with proxy, no request buffering==

note left of Client:Typical HTTP(S) client/proxy/server exchange\n for a very large PUT operation
Client->Proxy:Open connection
activate Client
activate Proxy
Client->Proxy:Send header, PUT op, CONTENT_LENGTH 17,918,719,194
Proxy->Server:Open connection
activate Server
Proxy->Server:Send modified header, PUT op, CONTENT_LENGTH 17,918,719,194
Client->Proxy:Send partial body (8,192)
Proxy->Server:Send partial body (8,192)
Client->Proxy:Send partial body (8,192)
Proxy->Server:Send partial body (8,192)
Client->Proxy:Send partial body (8,192)
Proxy->Server:Send partial body (8,192)
note over Client: …after 2,187,339 more 8K packets…
Client->Proxy:Send partial body (8,192)
Proxy->Server:Send partial body (8,192)
Client->Proxy:Send final body (5,338)
Proxy->Server:Send final body (5,338)
Server->Proxy:Send response, OK 200
deactivate Server
Proxy->Client:Send modified response, OK 200
deactivate Proxy
deactivate Client

==Large transfer, with proxy request buffering==

note left of Client:Typical HTTP(S) client/proxy/server exchange\nfor a very large PUT operation
Client->Proxy:Open connection
activate Client
activate Proxy
Client->Proxy:Send header, PUT op, CONTENT_LENGTH 17,918,719,194
Client->Proxy:Send partial body (8,192)
Client->Proxy:Send partial body (8,192)
Client->Proxy:Send partial body (8,192)
note over Client: …after 2,187,342 8K packets…
Client->Proxy:Send partial body (8,192)
Client->Proxy:Send final body (5,338)
Proxy->Server:Open connection
activate Server
Proxy->Server:Send modified header, PUT op, CONTENT_LENGTH 17,918,719,194
Proxy->Server:Send partial body (262,144)
Proxy->Server:Send partial body (262,144)
Proxy->Server:Send partial body (262,144)
note over Proxy: …after 68,350 more 262K packets…
Proxy->Server:Send partial body (262,144)
Proxy->Server:Send final body (128,218)
Server->Proxy:Send response, OK 200
deactivate Server
Proxy->Client:Send modified response, OK 200
deactivate Proxy
deactivate Client

==Slow loris attacks==

note left of Client:Typical HTTP(S) client/proxy/server exchange\nfor a “slow loris” DDoS attack
Client->Proxy:Open connection
activate Client
activate Proxy
Client->Proxy:Send header, PUT op, CONTENT_LENGTH 5,730
Client->Proxy:Send partial body (256)
space 3
Client->Proxy:Send partial body (256)
space 3
Client->Proxy:Send partial body (256)
note over Client: …after 94 more 256 byte packets with long delays between them…
Client->Proxy:Send partial body (256)
space 3
Client->Proxy:Send final body (22)
Proxy->Server:Open connection
activate Server
Proxy->Server:Send modified header, PUT op, CONTENT_LENGTH 5,730
Proxy->Server:Send body (5,730)
Server->Proxy:Send response, OK 200
deactivate Server
Proxy->Client:Send modified response, OK 200
deactivate Proxy
deactivate Client
note over Proxy:The Proxy server absorbed the long delays in sending the body, where an attack will send enough bytes to keep the connection open.\nThe Pbench Server was unaffected and did not see the effect of the attack.

==Caching (typically HEAD/GET methods on specified URLs==

note left of Client:Typical HTTP(S) client/proxy/server exchange\nfor a GET operation for a cachable page.
Client->Proxy:Open Connection
activate Client
activate Proxy
Client->Proxy:Send header, GET op, /objects/id42
Proxy->Proxy:Cache lookup for /objects/id42, not found
Proxy->Server:Open Connection
activate Server
Proxy->Server:Send modified header, GET op, /objects/id42
Server->Proxy:Send header, OK 200
Server->Proxy:Send response body (8K)
deactivate Server
Proxy->Client:Send modified header, OK 200
Proxy->Client:Send response body (8K)
deactivate Proxy
deactivate Client
space 1
Client->Proxy:Open Connection
activate Client
activate Proxy
Client->Proxy:Send header, GET op, /objects/id42
Proxy->Proxy:Cache lookup for /objects/id42, found
Proxy->Client:Send modified header, OK 200
Proxy->Client:Send response body (8K)
deactivate Proxy
deactivate Client




            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  @startuml
‘UML Sequence Diagram for pbench-agent work flow with Tool Meisters and Tool Data Sink.

User -> Controller: pbench-register-tool[-set] NodeA
note left of User: the “User” is the script or command line from which pbench-register-tool[-set]\nor pbench-user-benchmark is invoked.
note left of Controller: the notion of a “Controller” in the parlance of the pbench-agent is the host\nwhere tools are registered and benchmark scripts are invoked.

‘Place holder to setup Controller, Tool Store, Redis, and Tool Data Sink together so that they are drawn in the diagram before the nodes and server.
Controller -> ToolStore: no-op
Controller -> ToolDataSink: no-op
Controller -> Redis: no-op

‘Continue with first pbench-register-tool[-set]
Controller -> ToolStore: record
Controller -> User: success

User -> Controller: pbench-register-tool[-set] NodeB
Controller -> ToolStore: record
Controller -> User: success

User -> Controller: pbench-user-benchmark

par pbench-tool-meister-start (Setup Tool Meisters)
note left of Controller: pbench-user-benchmark calls pbench-tool-meister-start\nwhen all is ready to start running the benchmark(s).

Controller -> Redis: setup
note left of Redis: Redis Server\nContains all tool data for all nodes, loaded from the Tool Store by\nthe controller and stored in JSON format.  All Tool Meisters pull their\nindividual configuration from the Redis instance.  The Redis instance\nalso contains the configuration for the Tool Data Sink instance.
Redis -> Controller: success

Controller -> ToolDataSink: setup
ToolDataSink -> Redis: fetch config via Redis key
Redis -> ToolDataSink: success
note left of ToolDataSink: The Tool Data Sink now waits for the Tool Meisters to show up.

Controller –> NodeA: pbench-tool-meister startup
Controller –> NodeB: pbench-tool-meister startup
NodeA –> Redis: fetch config via Redis key
NodeB –> Redis: fetch config via Redis key
Redis –> NodeA: success startup
Redis –> NodeB: success startup
NodeA –> ToolDataSink: success startup
NodeB –> ToolDataSink: success startup

ToolDataSink -> Redis: success “startup”
note left of ToolDataSink: The Tool Data Sink reports success to the Controller only through Redis.
Redis -> Controller: success “startup”

note right of Controller: (optional) sysinfo is collected
Controller -> Redis: publish “sysinfo”, “tool group”, “directory”, “args”
Redis -> ToolDataSink: “tds-sysinfo”, “tool group”, “directory”, “args”
ToolDataSink -> Redis: “tm-sysinfo”, “tool group”, “directory”, “args”
par Redis pub/sub mech for “sysinfo”
Redis –> NodeA: “tm-sysinfo”, “tool group”, “directory”, “args”
Redis –> NodeB: “tm-sysinfo”, “tool group”, “directory”, “args”
NodeA –> ToolDataSink: PUT “sysinfo” config tar ball
ToolDataSink –> NodeA: success
NodeB –> ToolDataSink: PUT “sysinfo” config tar ball
ToolDataSink –> NodeB: success
NodeA –> Redis: “success”
NodeB –> Redis: “success”
Redis –> ToolDataSink: “success (NodeA)”
Redis –> ToolDataSink: “success (NodeB)”
‘End sysinfo
end
ToolDataSink -> Redis: “success - sysinfo”
Redis -> Controller: “success - sysinfo”

note right of Controller: the “init” tools phase (required) is started
Controller -> Redis: publish init, “tool group”, “directory”, “args”
Redis -> ToolDataSink: “tds-init”, “tool group”, “directory”, “args”
par Tool Data Sink persistent collectors started
ToolDataSink –> NodeApml: start pmlogger for NodeA
ToolDataSink –> NodeBpml: start pmlogger for NodeB
ToolDataSink –> Prometheus: start
‘End persistent collectors
end
ToolDataSink -> Redis: “tm-init”, “tool group”, “directory”, “args”
par Redis pub/sub mech for “tm-init”
Redis –> NodeA: “tm-init”, “tool group”, “directory”, “args”
Redis –> NodeB: “tm-init”, “tool group”, “directory”, “args”
NodeA –> NodeApmcd: start pmcd
NodeA –> NodeAne: start node_exporter
NodeB –> NodeBpmcd: start pmcd
NodeB –> NodeBne: start node_exporter
NodeA –> Redis: “success”
NodeB –> Redis: “success”
Redis –> ToolDataSink: “success (NodeA)”
Redis –> ToolDataSink: “success (NodeB)”
‘End tm-init
end
ToolDataSink -> Redis: “success - init”
Redis -> Controller: “success - init”

‘End pbench-tool-meister-start (Setup Tool Meisters)
end

par pbench-start-tools
note left of Controller: pbench-user-benchmark calls pbench-start-tools\njust before it invokes the user’s benchmark script.
Controller -> Redis: publish start tools, “tool group” “directory”
Redis -> ToolDataSink: start tools, “tool group” “directory”
par Redis pub/sub mech
ToolDataSink –> Redis: tm-start, “tool group” “directory”
ToolDataSink –> Redis: tm-start, “tool group” “directory”
Redis –> NodeA: tm-start, “tool group” “directory”
Redis –> NodeB: tm-start, “tool group” “directory”
NodeA –> Redis: success, tm-start
NodeB –> Redis: success, tm-start
‘End pub/sub mech
end
ToolDataSink -> Redis: success start tools
note left of ToolDataSink: the Tool Data Sink publishes success for “start”\nwhen it sees all other registered nodes have posted their success.
Redis -> Controller: success (start tools)
‘End pbench-start-tools
end

note left of Controller: Controller (pbench-user-benchmark) invokes benchmark script …

par pbench-stop-tools
note left of Controller: pbench-user-benchmark calls pbench-stop-tools\nimmediately following the termination of the\nuser’s benchmark script.
Controller -> Redis: publish stop tools, “tool group” “directory”
Redis -> ToolDataSink: stop tools, “tool group” “directory”
par Redis pub/sub mech
ToolDataSink –> Redis: tm-stop, “tool group” “directory”
ToolDataSink –> Redis: tm-stop, “tool group” “directory”
Redis –> NodeA: tm-stop, “tool group” “directory”
Redis –> NodeB: tm-stop, “tool group” “directory”
NodeA –> Redis: success, tm-stop
NodeB –> Redis: success, tm-stop
‘End pub/sub mech
end
ToolDataSink -> Redis: success stop tools
note left of ToolDataSink: the Tool Data Sink publishes success for “stop”\nwhen it sees all other registered nodes have posted their success.
Redis -> Controller: success (stop tools)
‘End pbench-stop-tools
end

par pbench-send-tools
note left of Controller: pbench-user-benchmark calls pbench-send-tools\nimmediately following the completion of\npbench-stop-tools.
Controller -> Redis: publish send tools
Redis -> ToolDataSink: send “tool group” “directory”
ToolDataSink -> Redis: tm-send “tool group” “directory”
par Redis pub/sub mech
Redis –> NodeA: tm-send “tool group” “directory”
Redis –> NodeB: tm-send “tool group” “directory”
note left of NodeA: Nodes A & B build up tar balls containing all tool data for given iteration
par HTTP PUT of tar balls
NodeA –> ToolDataSink: PUT tool(s) tar ball(s)
note left of ToolDataSink: the PUT operations from nodes will receive a 412 status\nin the case where the Tool Data Sink failed to setup\nfor the “send” operation before PUT operations began;\nnodes are required to retry on 412 status codes until\nanother status code is returned.
NodeB –> ToolDataSink: PUT tool(s) tar ball(s)
ToolDataSink –> NodeA: success PUT
ToolDataSink –> NodeB: success PUT
end
NodeA –> Redis: success tm-send
NodeB –> Redis: success tm-send
Redis –> ToolDataSink: success tm-send
Redis –> ToolDataSink: success tm-send
end
ToolDataSink -> Redis: success send
Redis -> Controller: success send
‘End pbench-send-tools
end

par pbench-tool-meister-stop (Shutdown Tool Meisters)

note right of Controller: the “end” tools phase (required) is started
Controller -> Redis: publish end, “tool group”, “directory”, “args”
Redis -> ToolDataSink: “tds-end”, “tool group”, “directory”, “args”
ToolDataSink -> Redis: “tm-end”, “tool group”, “directory”, “args”

par Redis pub/sub mech for “tm-end”
Redis –> NodeA: “tm-end”, “tool group”, “directory”, “args”
Redis –> NodeB: “tm-end”, “tool group”, “directory”, “args”
NodeA –> NodeApmcd: stop pmcd
NodeA –> NodeAne: stop node_exporter
NodeB –> NodeBpmcd: stop pmcd
NodeB –> NodeBne: stop node_exporter
NodeA –> Redis: “success”
NodeB –> Redis: “success”
Redis –> ToolDataSink: “success (NodeA)”
Redis –> ToolDataSink: “success (NodeB)”
‘End tm-end
end

par Tool Data Sink persistent collectors stopped
ToolDataSink –> NodeApml: stop pmlogger for NodeA
ToolDataSink –> NodeBpml: stop pmlogger for NodeB
ToolDataSink –> Prometheus: stop
‘End persistent collectors stopped
end

ToolDataSink -> Redis: “success - end”
Redis -> Controller: “success - end”

note right of Controller: (optional) sysinfo is collected
Controller -> Redis: publish “sysinfo”, “tool group”, “directory”, “args”
Redis -> ToolDataSink: “tds-sysinfo”, “tool group”, “directory”, “args”
ToolDataSink -> Redis: “tm-sysinfo”, “tool group”, “directory”, “args”
par Redis pub/sub mech for “sysinfo”
Redis –> NodeA: “tm-sysinfo”, “tool group”, “directory”, “args”
Redis –> NodeB: “tm-sysinfo”, “tool group”, “directory”, “args”
NodeA –> ToolDataSink: PUT “sysinfo” config tar ball
ToolDataSink –> NodeA: success
NodeB –> ToolDataSink: PUT “sysinfo” config tar ball
ToolDataSink –> NodeB: success
NodeA –> Redis: “success”
NodeB –> Redis: “success”
Redis –> ToolDataSink: “success (NodeA)”
Redis –> ToolDataSink: “success (NodeB)”
‘End sysinfo
end
ToolDataSink -> Redis: “success - sysinfo”
Redis -> Controller: “success - sysinfo”

note right of Controller: terminate
Controller -> Redis: publish “terminate”
Redis -> ToolDataSink: “tds-terminate”
ToolDataSink -> Redis: “tm-terminate”
par Redis pub/sub mech for “tm-terminate”
Redis –> NodeA: “tm-terminate”
Redis –> NodeB: “tm-terminate”
NodeA –> Redis: “success”
NodeB –> Redis: “success”
Redis –> ToolDataSink: “success (NodeA)”
Redis –> ToolDataSink: “success (NodeB)”
‘End sysinfo
end
ToolDataSink -> Redis: “success - terminate”
Redis -> Controller: “success - terminate”

‘End pbench-tool-meister-stop
end

Controller -> User: success (pbench-user-benchmark)

User -> Controller: pbench-move-results
Controller -> Server: send result tar ball
Server -> Controller: success
Controller -> User: success (pbench-move-results)
@enduml



            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  title Third-party Token Management

participant Pbench-Server
participant Browser
participant Identity-Broker
participant Identity-Provider

autonumber 1
activate Browser #red

rbox over Browser: Dashboard
Browser->Pbench-Server: GET Pbench client ID

Pbench-Server->Browser: 200 Response 

note right of Pbench-Server:{identity_broker_auth_URI: <auth_URI>\nclient_id: <pbench_client_id>\nclient_secret: <pbench_client_secret> # optional\n}

note over Browser:User clicks login
abox over Browser: Dashboard instructs the browser to \nload identity broker authentication page \nurl that was supplied by the Pbench-server.

deactivate Browser

Browser->Identity-Broker:GET identity broker auth URI\n(Authentication Request)

note right of Browser:GET request:\n<identity_broker_auth_URI>\n?client_id=<pbench_client_id>\n&response_type=code\n&redirect_uri=<dashboard_URI>\n&scope=openid

Identity-Broker->Browser: 200 Response

activate Browser #blue
rbox over Browser: Identity-Broker
note over Browser:User selects an identity provider from the list

abox over Browser:Identity broker instructs the browser to \nload identity provider authentication page

deactivate Browser

Browser->Identity-Provider:GET identity provider auth page
note over Browser:Ref: https://openid.net/specs/openid-connect-core-1_0.html#AuthorizationEndpoint
note right of Browser:GET request:\n<identity_provider_auth_URI>\n?client_id=<client_id as registered on identity provider>\n&response_type=code\n&redirect_uri=<identity_broker_URI>\n&scope=openid

Identity-Provider->Browser:303 Response\n(Redirect to identity provider auth page)

Browser->Identity-Provider:GET request auth Page
Browser<-Identity-Provider:200 Response

activate Browser #green
rbox over Browser: Identity-Provider

note over Browser:User challenge credentials and consent

abox over Browser:Identity provider instructs the browser to \nsend the request and load the response

deactivate Browser

Browser->Identity-Provider: GET/POST authentication request

Identity-Provider->Browser: 302/303 Response
note left of Identity-Provider:Redirect Location:\n<identity_broker_URI>\n?code=<auth_code>\n&state=<session_state_id>

Identity-Broker<-Browser:GET Redirect location (identity broker URI)

note over Identity-Broker:Identity federation\na. Checks the validity of response from the identity provider\nb. Imports and creates user identity from the token\nc. Links the user identity with the identity provider

Identity-Broker->Browser:302 Authentication Response\n(Redirect back to Pbench dashboard)

note left of Identity-Broker:Redirect Location:\n<dashboard_URI>\n?code=<identity_broker_auth_code>\n&state=<session_state_id>

Browser->Pbench-Server: GET Pbench-dashboard redirect location

Pbench-Server->Browser: 200 Response

activate Browser #red
rbox over Browser: Dashboard

Browser->Identity-Broker:POST Request to token endpoint

note right of Browser:POST request:\npost <identity_broker_token_endpoint>\npayload:\n{code: <identity_broker_auth_code>\nclient_id: <pbench_client_id>\nredirect_uri: <dashboard_URI>\n}

Identity-Broker->Browser: 200 Token Response

note left of Identity-Broker:token response:\n{\n  access_token: <identity_broker_access_token>,\n  expires_in: <number_of_seconds>,\n  refresh_expires_in: <number_of_seconds>,\n  refresh_token: <refresh_token>,\n  token_type: "Bearer",\n  id_token: <id_token>\n  session_state: <session_id>,\n  scope: <openid_email_profile>\n}

==Authorization setup complete; the steps below may be repeated to issue a series of requests==

Browser->Pbench-Server: POST /api/v1/<restricted_endpoint> request (Bearer: Pbench access token)

note over Pbench-Server:Validation and identity extraction\nfrom the Pbench token

alt Authenticated user is authorized for resource
Pbench-Server->Browser: 200 /api/v1/<restricted_endpoint> response
else Authenticated user is not authorized for resource
Pbench-Server->Browser:403 /api/v1/<restricted_endpoint> response
else Authorization token expired or invalid
Pbench-Server->Browser:401 /api/v1/<restricted_endpoint> response
end

space 
deactivate Browser
destroysilent Pbench-Server
destroysilent Browser
destroysilent Identity-Broker
destroysilent Identity-Provider







            

          

      

      

    

  

  
    
    

    FAQ
    

    

    

    
 
  

    
      
          
            
  
FAQ




            

          

      

      

    

  

  
    
    

    Access model
    

    

    

    
 
  

    
      
          
            
  
Access model

The Pbench Server employs a simple REST-style “CRUD” model for authorizing
resource access.


	CREATE enables the ability to create a new instance of a specific resource.


	READ enables the ability to read (but not modify) an existing instance of a
specific resource.


	UPDATE enables the ability to modify an existing instance of a specific resource.


	DELETE enables the ability to delete an existing instance of a specific resource.




The owner of a resource always has full CRUD access to that resource.

A user with the administrator role always has full CRUD access to all resources.

Any client, regardless of authentication, is able to READ a dataset with the
access property set to "public". Only the owner of the dataset, or a user with
the administrator role, can UPDATE or DELETE the dataset.


Roles

The Pbench Server access model allows assigning an ADMIN role to one or more
user accounts through the OIDC identity provider. These users will be granted
full CRUD access to all server data, including all datasets, server settings,
and audit logs.



Groups

TBD





            

          

      

      

    

  

  
    
    

    Metadata
    

    

    

    
 
  

    
      
          
            
  
Metadata


Dataset metadata

A dataset is referenced by a formal resource ID, and also has a resource name
for convenience. The Pbench Server also maintains metadata about each dataset,
which can help with searching and analysis. Some metadata is modifyable by an
authenticated user, while other metadata is maintained internally by the server
and can’t be changed. Authenticated users can also add any additional metadata
that might be of use.

Dataset metadata is represented as a set of nested JSON objects. There are four
distinct key namespaces. These can be addressed (read or changed) at any level
of the hierarchy using a dotted name path, for example dataset.resource_id
for a dataset’s resource ID, or global.environment.cluster.ip. The keys are
lowercase alphabetic, plus digits, hyphen, and underscore: so global.u-7 is
OK, but global.Frank isn’t.

The four namespaces are:


	dataset provides inherent attributes of the dataset, including the full
metadata.log as dataset.metalog. Most of these attributes cannot be changed
after creation.


	server provides server management state about a dataset. Most of these
cannot be changed by the user. While many may not be directly meaningful to the
user, the Pbench Server does not hide them. (Beware that retrieving the entire
server namespace may result in a substantial amount of data that’s of little
use to a client.)


	global provides user-controlled dataset metadata which can only be modified
by the owner of the dataset, but is visible to anyone with read access to the
dataset. By convention, a client should use a unique second-level key to avoid
conflicting paths. For example, the Pbench Dashboard uses global.dashboard.


	user provides a metadata namespace for each dataset that’s private to the
authenticated user: each user will see their own set of nested object structure
and values, and these are not shareable. Even if you don’t own a dataset you
can set your own private user metadata to help you categorize that dataset
and to find it again. By convention, a client should use a unique second-level
key to avoid conflicting paths. For example, the Pbench Dashboard uses
user.dashboard.




When a dataset is first processed, the Pbench Server will populate basic
metadata, including the creation timestamp, the owner of the dataset (the
username associated with the token given to the Pbench Agent
pbench-results-move command), and the full contents of the dataset’s
metadata.log file inside the dataset tarball. These are all accessible
under the dataset metadata key namespace.

The Pbench Server will also calculate a default deletion date for the dataset
based on the owner’s retention policy and the server administrator’s retention
policy along with some other internal management context. The expected deletion
date is accessible under the server metadata key namespace as
server.deletion

Clients can also set arbitrary metadata through the global and user
metadata namespaces.

For example, given the following hypothetical user JSON value:

{
    "project": ["OCP", "customer"],
    "tracker": {"examined": "2022-05-15", "revisit": true},
    "analysis": {"cpu": "high", "memory": "nominal"}
}





requesting the metadata user (e.g., with /api/v1/datasets/list?metadata=user)
would return the entire JSON value. In addition:


	user.project would return ["OCP", "customer"]


	user.tracker.examined would return "2022-05-15"


	user.analysis would return {"cpu": "high", "memory": "nominal"}






Metadata namespaces

There are currently four metadata namespaces.


	The dataset and server namespaces are defined and managed by Pbench.


	The global namespace allows an authenticated client to define an
arbitrary nested set of JSON objects associated with a specific dataset
owned by the authenticated user.


	The user namespace is similar to global in structure. The difference
is that where metadata in the global namespace can only be modified by the
owner of the dataset and is visible to all clients with read access to the
dataset, any authenticated user can set arbitrary values in the user
namespace and those values are visible only to the user who set them. Other
users may set different values for the same user namespace keys on the
dataset or may use completely different keys.




All of these namespaces are tied to a particular dataset resource ID, and cease
to exist if the associated dataset is deleted.


Dataset namespace

This defines the dataset resource, and contains metadata received from the
Pbench Agent, including the full contents of a metadata.log file if one is
present in the tarball. (Support for additional tarball formats is TBD.)

The metadata.log data is represented under the key dataset.metalog and can
be queried as part of the entire dataset using the dataset key, as a discrete
sub-document using dataset.metalog in specific “sections” such as
dataset.metalog.pbench or targeting a specific value like
dataset.metalog.pbench.script.


dataset.name

This namespace includes the resource name, which can be modified by the owner
of the dataset by setting the metadata key dataset.name. All other key values
in this namespace are controlled by the server and cannot be changed by the
client.




Server namespace

This defines internal Pbench Server management state related to a dataset
that’s not inherent to the representation of the user’s performance metrics.
These are generally not useful to clients, and some can be large. There are
three values in this namespace that clients can modify:


server.deletion

This is a date after which the Pbench Server may choose to delete the dataset.
This is computed when a dataset is received based on user profile preferences
and server configuration; but it can be modified by the owner of the dataset,
as long as the new timestamp remains within the maximum allowed
server data retention period.



server.archiveonly

This is a boolean that can be set to a boolean True when a dataset is first
uploaded to prevent the Pbench Server from unpacking or indexing the dataset.
The server will archive the dataset and it can be retrieved for offline
analysis but the server will do nothing else with it. The value can be
specified as “t”, “true”, “y” or “yes” (case insensitive) for True, and “f”,
“false”, “n”, or “no” (also case insensitive) for False. Note that this is
currently only interpreted by the Pbench Server when a dataset is first
uploaded, and has no effect if modified later.



server.origin

This is defined to provide a common mechanism to record the origin of a
dataset. This is a string value, and the Pbench Server does not interpret it.




Global namespace

The server will never modify or directly interpret values in this namespace. An
authenticated client representing the owner of a dataset can set any keys
within this namespace to any valid JSON values (string, number, boolean, list,
or nested objects) for retrieval later. All clients with read access to the
dataset will see the same values.

The recommended best practice is to select a project sub-key that will be unique
and minimize the risk of collisions between various clients. The Pbench Dashboard
project, for example, will store all client metadata under the global.dashboard
sub-namespace, for example global.dashboard.seen. A hypothetical client named
“clienta” might use global.clienta, for example global.clienta.configuration.

Pbench Server clients can use metadata to filter selected datasets in the
collection browser, datasets.



User namespace

The server will never modify or directly interpret values in this namespace. An
authenticated client able to see a dataset can set metadata keys within this
namespace to any valid JSON values (string, number, boolean, list, or nested
objects) for retrieval later. Each authenticated client may set distinct values
for the same keys, or use completely different keys, and can retrieve those
values later. A client authenticated for another user has its own completely
unique user namespace.

The user metadata namespace behaves as a user-specific sub-resource under the
dataset. Any authenticated client has UPDATE and DELETE access to this private
sub-resource as long as the client has READ access to the dataset. See
Access model for general information about the Pbench
Server access controls.

The recommended best practice is to select a project sub-key that will be unique
to minimize the risk of collisions between various clients. The Pbench Dashboard
project, for example, will store all user-specific client metadata under the
user.dashboard sub-namespace, for example user.dashboard.favorite. A
hypothetical client named “clienta” might use user.clienta, for example
user.clienta.configuration.

An unauthenticated client can neither set nor retrieve any user namespace
values; such a client will always see the user namespace as empty.






            

          

      

      

    

  

  
    
    

    Pbench Server V1 API documentation
    

    

    

    
 
  

    
      
          
            
  
Pbench Server V1 API documentation

The documents in this set describe the APIs supported by the Pbench 1.0 Server.


Discovering the Pbench Server API

Once you know the hostname of a Pbench Server, you can ask for the API
configuration using the endpoints API. This will report the
server’s version and a list of all API end points supported by the server.



Pbench Server configuration settings

Some aspects of Pbench Server operation can be controlled by a user holding the
ADMIN role through the
server configuration API, including disabling the Pbench
Server API while the server is undergoing maintenance and setting a banner
message accessible to clients.



Pbench Server resources


Datasets

The dataset resource encompasses everything the Pbench Server knows about a
performance run captured by the Pbench Agent through a “dataset tarball”. This
includes the physical files transferred from the agent along with all backend
databases maintained by the server.

The API identifies a dataset using the dataset resource ID, which is a hex
representing a checksum hash of the dataset tarball. This ID can’t change during
the life of the dataset.

When a dataset is deleted, all data maintained by the server associated with that
dataset resource ID is deleted, including backend database records, unpacked file
artifacts, and the archived tarball. The resource ID becomes invalid subsequently
unless a new dataset is created with the same checksum value. (This is highly
unlikely, unless the same Pbench Agent tarball is uploaded again.)



Metadata

Metadata resources are secondary resources tied to a dataset resource and, for
the user namespace also to a user resource. Metadata resources are key/value
pairs, as described in metadata.

The lifetime of a metadata resource is bounded by the lifetime of the dataset
resource ID. That is, when a dataset is deleted, all metadata associated with
that dataset is also deleted. If a user is deleted, then all user namespace
metadata associated with that user (for any dataset) is also deleted.

Although user namespace metadata can be associated with any dataset to which
the authenticated user has READ access, those metadata keys will become
unreachable if the user’s access to the associated dataset changes to remove
READ access. For example, if a PUBLIC access dataset owned by a different user
is made PRIVATE, or if the user relies on a role or group (see
access model) to READ the dataset and that privilege is
removed. In this case, however, the metadata values remain, and will become
visible again if READ access is restored.




Dataset metadata

You can read a more complete specification of Pbench Server metadata at
metadata.

When a dataset is first processed, the Pbench Server will populate basic
metadata, including the creation timestamp, the owner of the dataset (the user
associated with the authorization token given to the Pbench Agent
pbench-results-move command), and the full contents of the dataset’s
metadata.log file inside the dataset tarball. The Pbench Server will also
calculate a default deletion date for the dataset based on the owner’s
retention policy and the server administrator’s retention policy.

Clients can also set arbitrary metadata in the global and user
metadata namespaces. The global namespace can only be modified by the
owner of the dataset, and is visible to anyone with read access to the dataset.
The user namespace is private to each authenticated user, and even if you
don’t own a dataset you can set your own private user metadata to help you
categorize that dataset and to find it again.

The primary dataset resource_id is the computed MD5 of the dataset tarball.
This is generated by the agent, and checked on the server side to ensure data
consistency.



Discovering accessible datasets

The datasets accessible by a client are limited by the dataset access controls
and the client’s authorization. Any client can read all “public” datasets, but
only the owning user can access “private” datasets.

You can determine the datasets you’re allowed to view using the list
API. This will return the resource name, the formal resource ID, and selected
metadata for each dataset the authenticated user is allowed to read. You can
filter the datasets you want listed by date range, owning user, or access
policy.

It may sometimes be convenient to know the date range of those datasets in
advance, for example to initialize a date picker. You can do this by calling
the daterange API to determine the range of dataset creation
dates accessible to the authenticated client.



Discovering dataset details

To get the details of the dataset’s run configuration, in addition to specified
server metadata, you can use the detail API. This returns the
resource ID of each selected dataset, along with selectable metadata providing
information about the system configuration and tool configuration for the
dataset.



Managing a dataset

You can control the visibility (access policy) for a dataset that you own by
using the publish API. You can make each dataset “public”
(readable to everyone) or “private” (readable only to you).

To delete a dataset you own, use delete.



Accessing dataset inventory

The Pbench Agent code uploads a dataset to the Pbench Server in the form of a
tarball with a carefully designed format. That tarball contains a directory
structure which the Pbench Server uses to index and expose details collected by
the Pbench Agent during the course of a Pbench benchmark run.

While there are many ways for a client to access the metrics and metadata
associated with a dataset, a client can also directly access the dataset
tarball inventory.

The contents API exposes the directory hierarchy within the
tarball, from the root directory / through the leaf files. A client can
discover the entire hierarchical content of the dataset tarball by iterating
through the directories list of each
directory object.

The inventory API returns the raw byte stream of any regular
file within the directory hierarchy, including log files, postprocessed JSON
files, and benchmark result text files.





            

          

      

      

    

  

  
    
    

    GET /api/v1/datasets/<dataset>/contents/[<path>]
    

    

    

    
 
  

    
      
          
            
  
GET /api/v1/datasets/<dataset>/contents/[<path>]

This API returns an application/json document describing a file or the
content of a directory at a specified <path> within the <dataset> tarball
representation.


URI parameters

<dataset> string 

The resource ID of a dataset on the Pbench Server.

<path>    string 

The path of an item in the dataset inventory, as captured by the Pbench Agent
packaging. Note that the / separating the two parameters serves to mark the
relative root directory of the tarball. For example
/api/v1/datasets/<dataset>/contents/ represents the root, and
/api/v1/datasets/<dataset>/contents/directory/ represents a directory named
directory at the root level.



Request headers

authorization: bearer token 

Bearer schema authorization is required to access any non-public dataset.
E.g., authorization: bearer <token>



Response headers

content-type: application/json 

The return is a serialized JSON object with information about the named file.



Resource access


	Requires READ access to the <dataset> resource




See Access model



Response status

200   OK 

Successful request.

401   UNAUTHORIZED 

The client is not authenticated.

403   FORBIDDEN 

The authenticated client does not have READ access to the specified dataset.

404   NOT FOUND 

Either the <dataset> or the relative <path> within the dataset does not
exist.

503   SERVICE UNAVAILABLE 

The server has been disabled using the server-state server configuration
setting in the server configuration API. The response
body is an application/json document describing the current server state,
a message, and optional JSON data provided by the system administrator.



Response body

The application/json response body consists of a JSON object describing the
file or directory at a target <path> within a dataset tarball.

When the <path> refers to a directory, the response object is described in
Directory object; when the <path> refers to a file, the
response object is described in File object.


Directory object

When the <path> refers to a directory within the dataset representation,
Pbench returns a JSON object with two list fields:


	"directories" is a list of subdirectory objects, and


	"files" is a list of file objects




{
    "directories": [
        {
            "name": "dir1",
            "type": "dir",
            "uri": "https://hostname/api/v1/datasets/<id>/contents/dir1"
        },
        {
            "name": "dir2",
            "type": "dir",
            "uri": "https://hostname/api/v1/datasets/<id>/contents/dir2"
        },
        ...
    ],
    "files": [
        {
        "name": "file.txt",
        "mtime": "2022-05-18T16:02:30",
        "size": 24,
        "mode": "0o644",
        "type": "reg",
        "uri": "https://hostname/api/v1/datasets/<id>/inventory/file.txt"
        },
        {
        "name": "data.lis",
        "mtime": "2022-05-18T16:02:06",
        "size": 18,
        "mode": "0o644",
        "type": "reg",
        "uri": "https://hostname/api/v1/datasets/<id>/inventory/data.lis"
        },
        ...
    ]
}






Subdirectory object

The subdirectory object gives the name of the directory, the type of the entry,
and a URI that can be used with a subsequent GET operation to return a
directory object for that nested path.

When a directory contains a symlink to a directory, that subdirectory name will
appear in the "directories" list, but will be designated with a type of
sym instead of dir.

The type codes are:


	dir: Directory


	sym: Symbolic link




{
    "name": "reference-result",
    "type": "sym",
    "uri": "https://hostname/api/v1/datasets/<id>/contents/linkresult"
},
{
    "name": "directory",
    "type": "dir",
    "uri": "https://hostname/api/v1/datasets/<id>/contents/directory"
}








File object

The file object gives the name of the file, file system information about that
file, and a URI that can be used with a subsequent GET operation to return
the raw byte stream of that file.

The file system information includes:


	mtime: the file’s last modification time,


	size: the size of the file,


	mode: the file permissions (as an octal “mode” string), and


	type: the file’s type. The type values are:


	reg: Regular UNIX file


	sym: Symbolic link








Note that symlinks to files within the dataset representation will result in a
URI returning the linked file’s byte stream.

{
    "name": "iteration.lis",
    "mtime": "2022-05-18T16:02:06",
    "size": 18,
    "mode": "0o644",
    "type": "reg",
    "uri": "https://hostname/api/v1/datasets/<id>/inventory/<path>"
}










            

          

      

      

    

  

  
    
    

    DELETE /api/v1/datasets/<dataset>
    

    

    

    
 
  

    
      
          
            
  
DELETE /api/v1/datasets/<dataset>

This API completely deletes a dataset resource, erasing the dataset resource ID,
the dataset tarball and unpacked artifacts, and all backend data related to the
dataset.


URI parameters

<dataset> string 

The resource ID of a dataset on the Pbench Server.



Request headers

authorization: bearer token 

Bearer schema authorization is required to access any non-public dataset.
E.g., authorization: bearer <token>



Response headers

content-type: application/json 

The return is a serialized JSON object with status feedback.



Resource access


	Requires DELETE access to the <dataset> resource




See Access model



Response status

200   OK 

Successful request.

401   UNAUTHORIZED 

The client is not authenticated.

403   FORBIDDEN 

The authenticated client does not have DELETE access to the specified dataset.

404   NOT FOUND 

The <dataset> resource ID does not exist.

503   SERVICE UNAVAILABLE 

The server has been disabled using the server-state server configuration
setting in the server configuration API. The response
body is an application/json document describing the current server state,
a message, and optional JSON data provided by the system administrator.



Response body

The application/json response body consists of a JSON object summarizing the
Elasticsearch index deletion. For example, if the dataset has 9 Elasticsearch
index documents and all are deleted successfully,

{
    "failure": 0,
    "ok": 9
}





If the dataset had not been indexed, both numbers will be 0. A non-zero
"failure" indicates a partial success, which can be retried.





            

          

      

      

    

  

  
    
    

    GET /api/v1/datasets/<dataset>/detail
    

    

    

    
 
  

    
      
          
            
  
GET /api/v1/datasets/<dataset>/detail

This API returns detailed information about a dataset’s run environment from the
Elasticsearch index. It can also return Pbench Server metadata.

Note that this information is mostly acquired from the dataset’s metadata.log
file which is also directly accessible as metadata through dataset.metalog.


URI parameters

<dataset> string 

The resource ID of a Pbench dataset on the server.



Query parameters

metadata requested metadata keys 

A list of server metadata tags; see Metadata. For example,
?metadata=dataset.access,global.server.legacy will return the value of the
two metadata keys dataset.access (the dataset’s access scope) and
global.server.legacy (a user-defined global value).



Request headers

authorization: bearer token 

Bearer schema authorization is required to access any non-public dataset.
E.g., authorization: bearer <token>



Response headers

content-type: application/json 

The return is a JSON document containing the summary “run” data from the
dataset index.



Resource access


	Requires READ access to the <dataset> resource




See Access model



Response status

200   OK 

Successful request.

400   BAD_REQUEST 

One or more metadata keys specified were unacceptable.

401   UNAUTHORIZED 

The client is not authenticated.

403   FORBIDDEN 

The authenticated client does not have READ access to the specified dataset.

404   NOT FOUND 

The <dataset> does not exist.

503   SERVICE UNAVAILABLE 

The server has been disabled using the server-state server configuration
setting in the server configuration API. The response
body is an application/json document describing the current server state,
a message, and optional JSON data provided by the system administrator.



Response body

The application/json response body is a JSON object containing the dataset
index “run” data and any requested server metadata, as follows.

The following example shows server metadata from the query parameter
?metadata=dataset.access.

{
    "hostTools": [
        {
            "hostname": "controller.example.com",
            "tools": {
                "hostname-alias": "",
                "hostname-all-fqdns": "host.containers.internal controller.example.com controller.example.com controller.example.com",
                "hostname-all-ip-addresses": "10.1.36.93 172.21.63.246 10.1.63.92 192.168.122.1",
                "hostname-domain": "rdu2.scalelab.redhat.com",
                "hostname-fqdn": "controller.example.com",
                "hostname-ip-address": "10.1.36.93",
                "hostname-nis": "hostname: Local domain name not set",
                "hostname-short": "controller",
                "rpm-version": "v0.71.0-3g85910732a",
                "tools": "vmstat",
                "vmstat": "--interval=3"
            }
        }
    ],
    "runMetadata": {
        "controller": "controller.example.com",
        "controller_dir": "controller.example.com",
        "date": "2023-03-23T20:26:03",
        "end": "2023-03-23T20:26:13.177673",
        "file-date": "2023-03-23T20:27:12.376720",
        "file-name": "/srv/pbench/archive/fs-version-001/controller.example.com/pbench-user-benchmark__2023.03.23T20.26.03.tar.xz",
        "file-size": 12804,
        "hostname_f": "controller.example.com",
        "hostname_ip": "10.1.36.93, 172.21.63.246, 10.1.63.92, 192.168.122.1",
        "hostname_s": "f09-h29-b01-5039ms",
        "id": "001ab7f04079f620f6f624b6eea913df",
        "iterations": "1-default",
        "md5": "001ab7f04079f620f6f624b6eea913df",
        "name": "pbench-user-benchmark__2023.03.23T20.26.03",
        "pbench-agent-version": "v0.71.0-3g85910732a",
        "raw_size": 265692,
        "result-prefix": "spc",
        "script": "pbench-user-benchmark",
        "start": "2023-03-23T20:26:05.949697",
        "tar-ball-creation-timestamp": "2023-03-23T20:26:16.755310",
        "toc-prefix": "pbench-user-benchmark__2023.03.23T20.26.03",
        "toolsgroup": "default",
        "user": "agent"
    },
    "serverMetadata": {
        "dataset.access": "public"
    }
}









            

          

      

      

    

  

  
    
    

    GET /api/v1/endpoints
    

    

    

    
 
  

    
      
          
            
  
GET /api/v1/endpoints

This API describes the set of URI endpoints available under the Pbench Server
V1 API, the Keycloak broker configuration for authorization, and the current
Pbench Server version identification.

This API does not require authentication and has no access restrictions.


Response status

200   OK 

Successful request.



Response headers

content-type: application/json 

The return is a JSON document containing the summary “run” data from the
dataset index.



Response body

The application/json response body is a JSON object describing the Pbench
Server configuration.

The information is divided into four sections, as described below.


identification

This identifies the name and version of the Pbench Server.



openid

The Pench Server authenticates through an OIDC broker (e.g., Keycloak). In order
to authenticate and receive an authorization token to present to server APIs, the
client must redirect to the broker login page using the server_url given here,
with the Pbench Server realm and client ID.



uri

A representation of the Pbench Server APIs supported on this server.


Name

The “name” of the API. For example, to query or set metadata for a dataset,
endpoints.uri.dataset_metadata would return a JSON object describing the
URI template and parameters for the API.


template

The API’s URI template pattern, with URI parameters in the form {<name>}, as in
https://host:port/api/v1/datasets/{dataset}/metadata.



params

A sub-object describing the URI parameters referenced in the URI template. Each
param has a name and type. Note that “type” refers to the Flask URI parsing, and
the main useful distinction here is that string means a simple undeliminated
string whereas path refers to a /-separated string that resembles a UNIX file
path.

Each param name appears in the template in the form {<name>}, which is a convenient
format for the Python format function.

    uri = endpoints["uri"]["datasets_metadata"]["template"].format(dataset=id)





A similar formatter can be built easily for Javascript:

/**
 * Expand a templated API URI like a Python `.format`
 *
 * @param {Object} endpoints - endpoint object from server
 * @param {string} name - name of the API to expand
 * @param {Object} args - value for each templated parameter
 * @return {string} - formatted URI
 */
export const uriTemplate = (endpoints, name, args) => {
  return Object.entries(args).reduce(
    (uri, [key, value]) => uri.replace(`{${key}}`, value),
    endpoints.uri[name].template
  );
};

let uri = uriTemplate(
    endpoints,
    'datasets_metadata',
    {dataset: resource_id}
    );





{
    "identification": "Pbench server 1.0.0-85189370c",
    "openid": {
        "uri": "openid.example.com",
        "pbench-client": "client name"
    },
    "uri": {
        "datasets": {
            "params": {
                "dataset": {
                    "type": "string"
                }
            },
            "template": "https://10.1.1.1:8443/api/v1/datasets/{dataset}"
        },
        "datasets_contents": {
            "params": {
                "dataset": {
                    "type": "string"
                },
                "target": {
                    "type": "path"
                }
            },
            "template": "https://10.1.1.1:8443/api/v1/datasets/{dataset}/contents/{target}"
        },
        "datasets_daterange": {
            "params": {},
            "template": "https://10.1.1.1:8443/api/v1/datasets/daterange"
        },
        "datasets_detail": {
            "params": {
                "dataset": {
                    "type": "string"
                }
            },
            "template": "https://10.1.1.1:8443/api/v1/datasets/{dataset}/detail"
        },
        "datasets_inventory": {
            "params": {
                "dataset": {
                    "type": "string"
                },
                "target": {
                    "type": "path"
                }
            },
            "template": "https://10.1.1.1:8443/api/v1/datasets/{dataset}/inventory/{target}"
        },
        "datasets_list": {
            "params": {},
            "template": "https://10.1.1.1:8443/api/v1/datasets"
        },
        "datasets_mappings": {
            "params": {
                "dataset_view": {
                    "type": "string"
                }
            },
            "template": "https://10.1.1.1:8443/api/v1/datasets/mappings/{dataset_view}"
        },
        "datasets_metadata": {
            "params": {
                "dataset": {
                    "type": "string"
                }
            },
            "template": "https://10.1.1.1:8443/api/v1/datasets/{dataset}/metadata"
        },
        "datasets_namespace": {
            "params": {
                "dataset": {
                    "type": "string"
                },
                "dataset_view": {
                    "type": "string"
                }
            },
            "template": "https://10.1.1.1:8443/api/v1/datasets/{dataset}/namespace/{dataset_view}"
        },
        "datasets_search": {
            "params": {},
            "template": "https://10.1.1.1:8443/api/v1/datasets/search"
        },
        "datasets_values": {
            "params": {
                "dataset": {
                    "type": "string"
                },
                "dataset_view": {
                    "type": "string"
                }
            },
            "template": "https://10.1.1.1:8443/api/v1/datasets/{dataset}/values/{dataset_view}"
        },
        "endpoints": {
            "params": {},
            "template": "https://10.1.1.1:8443/api/v1/endpoints"
        },
        "login": {
            "params": {},
            "template": "https://10.1.1.1:8443/api/v1/login"
        },
        "logout": {
            "params": {},
            "template": "https://10.1.1.1:8443/api/v1/logout"
        },
        "register": {
            "params": {},
            "template": "https://10.1.1.1:8443/api/v1/register"
        },
        "server_audit": {
            "params": {},
            "template": "https://10.1.1.1:8443/api/v1/server/audit"
        },
        "server_settings": {
            "params": {
                "key": {
                    "type": "string"
                }
            },
            "template": "https://10.1.1.1:8443/api/v1/server/settings/{key}"
        },
        "upload": {
            "params": {
                "filename": {
                    "type": "string"
                }
            },
            "template": "https://10.1.1.1:8443/api/v1/upload/{filename}"
        },
        "user": {
            "params": {
                "target_username": {
                    "type": "string"
                }
            },
            "template": "https://10.1.1.1:8443/api/v1/user/{target_username}"
        }
    }
}












            

          

      

      

    

  

  
    
    

    GET /api/v1/datasets/<dataset>/inventory/[<path>]
    

    

    

    
 
  

    
      
          
            
  
GET /api/v1/datasets/<dataset>/inventory/[<path>]

This API returns an application/octet-stream document containing the raw byte
stream of a regular file at the <path> within the <dataset> tarball
representation.


URI parameters

<dataset> string 

The resource ID of a Pbench dataset on the server.

<path>    string 

The resource path of an item in the dataset inventory, as captured by the
Pbench Agent packaging; for example, /metadata.log for a file named
metadata.log at the top level of the dataset tarball, or /dir1/dir2/file.txt
for a file.txt file in a directory named dir2 within a directory called
dir1 at the top level of the dataset tarball.



Request headers

authorization: bearer token 

Bearer schema authorization is required to access any non-public dataset.
E.g., authorization: bearer <token>



Response headers

content-type: application/octet-stream 

The return is a raw byte stream representing the contents of the named file.

content-disposition: <action>; filename=<name> 

This header defines the recommended client action on receiving the byte stream.
The <action> types are either inline which suggests that the data can be
displayed “inline” by a web browser or attachment which suggests that the data
should be saved into a new file. The <name> is the original filename on the
Pbench Server. For example,

content-disposition: attachment; filename=pbench-fio-config-2023-06-29-00:14:50.tar.xz





or

content-disposition: inline; filename=data.txt







Resource access


	Requires READ access to the <dataset> resource




See Access model



Response status

200   OK 

Successful request.

401   UNAUTHORIZED 

The client is not authenticated.

403   FORBIDDEN 

The authenticated client does not have READ access to the specified dataset.

404   NOT FOUND 

Either the <dataset> or the relative <path> within the dataset does not
exist.

415 UNSUPPORTED MEDIA TYPE 

The <path> refers to a directory. Use
/api/v1/dataset/<dataset>/contents/<path> to request a JSON response document
describing the directory contents.

503   SERVICE UNAVAILABLE 

The server has been disabled using the server-state server configuration
setting in the server configuration API. The response
body is an application/json document describing the current server state,
a message, and optional JSON data provided by the system administrator.



Response body

The application/octet-stream response body is the raw byte stream contents of
the specified file.





            

          

      

      

    

  

  
    
    

    GET /api/v1/datasets
    

    

    

    
 
  

    
      
          
            
  
GET /api/v1/datasets

This API returns an application/json document describing a filtered
collection of datasets accessible to the client. (An unauthenticated client
can only list datasets with access public.)

The collection of datasets may be filtered using any combination of a number
of query parameters, including owner, access, name substring, date range,
and arbitrary metadata filter expressions. The selected datasets may be sorted
by any metadata key value in either ascending or descending order. Multiple
sort parameters will be processed in order.

Large collections can be paginated for efficiency using the limit and offset
query parameters.

The keysummary and daterange query parameters (if true) select “summary”
modes where aggregate metadata is returned without a list of datasets. These two
may be used together, but cannot be used along with the normal collection list
mode as they aren’t subject to pagination.


Query parameters

access    string 

Select whether only private or only public access datasets will be included
in the list. By default, all datasets readable by the authenticated user are
included. For example, without constraints /datasets/list for an authenticated
user will include all public datasets plus all datasets owned by the
authenticated user; specifying private will show only the authenticated user’s
private datasets, while specifying public will show only public datasets
(regardless of ownership).

daterange boolean 

Instead of returning a filtered set of datasets, return only the upload
timestamps of the oldest and most recent datasets in the filtered set. This
may be useful for initializing a date picker. If no datasets are selected by
the specified filters, the from and to keys (see
results) will not be returned.

end date/time 

Select only datasets created on or before the specified time. Time should be
specified in ISO standard format, as YYYY-MM-DDThh:mm:ss.ffffff[+|-]HH:MM.
If the timezone offset is omitted it will be assumed to be UTC (+00:00); if
the time is omitted it will be assumed as midnight (00:00:00) on the
specified date.

filter metadata filtering 

Select datasets matching the metadata expressions specified via filter
query parameters. Each expression has the format [chain]key:[op]value[:type]:


	chain Prefix an expression with ^ (circumflex) to allow combining a set
of expressions with OR rather than the default AND.


	key The name of a metadata key (for example, dataset.name)


	op An operator to specify how to compare the key value:


	= (Default) Compare for equality


	~ Compare against a substring


	> Greater than


	< Less than


	>= Greater than or equal to


	<= Less than or equal to


	!= Not equal






	value The value to compare against. This will be interpreted based on the specified type.


	type The string value will be cast to this type. Any value can be cast to
type str. General metadata keys (server, global, user, and
dataset.metalog namespaces) that have values incompatible with the specified
type will be ignored. If you specify an incompatible type for a primary
dataset key, an error will be returned as these types are defined by the
Pbench schema so no match would be possible. (For example, dataset.name:2:int
or dataset.access:2023-05-01:date.)


	str (Default) Compare as a string


	bool Compare as a boolean


	int Compare as an integer


	date Compare as a date-time string. ISO-8601 recommended, and UTC is
assumed if no timezone is specified.








For example, dataset.name:foo looks for datasets with the name “foo” exactly,
whereas dataset.name:~foo looks for datasets with a name containing the
substring “foo”.

Multiple expressions may be combined across multiple filter query parameters
or as comma-separated lists in a single query parameter. Multiple filter
expressions are combined as an AND expression, matching only when all
expressions match. However any consecutive set of expressions starting with ^
are collected into an “OR list” that will be AND-ed with the surrounding
terms.

For example,


	filter=dataset.name:a,server.origin:EC2 returns datasets with a name of
“a” and an origin of “EC2”.


	filter=dataset.name:~andy,^server.origin:EC2,^server.origin:RIYA, dataset.access:public
returns only “public” datasets with a name containing the string “andy” which also
have an origin of either “EC2” or “RIYA”. As a SQL query, we might write it
as dataset.name like "%andy%" and (server.origin = 'EC2' or server.origin = 'RIYA') and dataset.access = 'public'.




NOTE: filter expression term values, like the true in
GET /api/v1/datasets?filter=server.archiveonly:true, are by default
interpreted as strings, so be careful about the string representation of the
value. In this case, server.archiveonly is a boolean, which will be matched
as a string value “true” or “false”. You can instead specify the expression
term as server.archiveonly:t:bool which will treat the specified match value
as a boolean (t[rue] or y[es] for true, f[alse] or n[o] for false) and
match against the boolean metadata value.

keysummary boolean 

Instead of displaying a list of selected datasets and metadata, use the set of
specified filters to accumulate a nested report on the metadata key namespace
for the set of datasets. See metadata for deails on the
Pbench Server metadata namespaces. Because the global and user namespaces
are completely dynamic, and the dataset.metalog sub-namespace varies greatly
across Pbench Agent benchmark scripts, this mode provides a mechanism for a
metadata visualizer to understand what’s available for a set of datasets. If no
datasets are selected by the specified filters, the keys key (see
results) will be set to an empty object.

limit integer 

“Paginate” the selected datasets by returning at most limit datasets. This
can be used in conjunction with offset to progress through the full list in
smaller chunks either to assist with a paginated display or to limit data
transfer requirements.

metadata list 

Request the named metadata to be returned along with the
resource name and ID. This can be a single metadata key path or comma-separated
list of such strings. The metadata query parameter can be repeated. For
example, the following are all equivalent:


	?metadata=dataset.created,server.deletion,user


	?metadata=dataset.created&metadata=dataset.deletion,user


	?metadata=dataset.created&metadata=dataset.deletion&metadata=user




mine boolean 

Allows filtering for datasets owned by the authenticated client (if the value
is omitted, e.g., ?mine or ?mine=true) or owned by other users (e.g.,
?mine=false).

name string 

Select only datasets with a specified substring in their name. The filter
?name=fio is semantically equivalent to ?filter=dataset.name:~fio.

offset integer 

“Paginate” the selected datasets by skipping the first offset datasets that
would have been selected by the other query terms. This can be used with
limit to progress through the full list in smaller chunks either to assist
with a paginated display or to limit data transfer requirements.

owner string 

Select only datasets owned by the specified username. Unless the username
matches the authenticated user, only “public” datasets can be selected.

sort sort expression 

Sort the returned datasets by one or more sort expressions. You can separate
multiple expressions using comma lists, or across separate sort query
parameters, which will be processed in order. Any Metadata namespace key can
be specified.

Specify a sort order using the keywords asc (ascending) or desc
(descending), separated from the key name with a colon (:). For example,
dataset.name:asc or dataset.metalog.pbench.script:desc. The default is
“ascending” if no order is specified. If no sort expressions are specified,
datasets are returned sorted by dataset.resource_id.

For example, GET /api/v1/datasets?sort=global.dashboard.seen:desc,dataset.name
will return selected datasets sorted first in descending order based on whether
the dataset has been marked “seen” by the dashboard, and secondly sorted by the
dataset name. The Pbench Dashboard stores global.dashboard.seen as a boolean
value, so in this case true values will appear before false values.

start date/time 

Select only datasets created on or after the specified time. Time should be
specified in ISO standard format, as YYYY-MM-DDThh:mm:ss.ffffff[+|-]HH:MM.
If the timezone offset is omitted it will be assumed to be UTC (+00:00); if
the time is omitted it will be assumed as midnight (00:00:00) on the
specified date.



Request headers

authorization: bearer token [optional] 

Bearer schema authorization is required to access any non-public dataset.
E.g., authorization: bearer <token>. If omitted, the client is unauthenticated
and only public access datasets will be selected.



Response headers

content-type: application/json 

The return is a serialized JSON object with information about the selected
datasets.



Resource access


	Only <dataset> resources selected by the filter to which the authenticated
user has READ access will be returned.




See Access model



Response status

200   OK 

Successful request.

401   UNAUTHORIZED 

The client did not provide an authentication token but asked to filter datasets
by owner, access=private, mine, or asked for user namespace metadata.

403   FORBIDDEN 

The client asked to filter access=private datasets for an owner for which
the client does not have READ access.

503   SERVICE UNAVAILABLE 

The server has been disabled using the server-state server configuration
setting in the server configuration API. The response
body is an application/json document describing the current server state,
a message, and optional JSON data provided by the system administrator.



Response body


Dataset date range

The application/json response body is a JSON object describing the earliest
and most recent dataset upload time for the selected list of datasets. If the
collection filters exclude all datasets (the result set is empty), the return
value will be empty, omitting both the from and to keywords.

{
    "from": "2023-03-17T03:14:02.013184+00:00",
    "to": "2023-04-05T11:29:02.585772+00:00"
}







Dataset list

The application/json response body contains a list of objects which describe
the datasets selected by the specified query criteria, along with the total
number of matching datasets and a next_url to support pagination.


next_url

When pagination is used, this gives the full URI to acquire the next page using
the same metadata and limit values. The client can simply GET this URI for
the next page. When the entire collection has been returned, next_url will be
null.



total

The total number of datasets matching the filter criteria regardless of the
pagination settings.



results

The paginated dataset collection.

Each of these objects contains the following fields:


	resource_id: The internal unique ID of the dataset within the Pbench Server.
This value will be used to reference the dataset in most other APIs.


	name: The resource name given to the dataset. While this has an initial
default value related to the benchmark script, date, and user configuration
parameters, this value can be changed by the owner of the dataset and is for
display purposes and must not be assumed to be unique or definitive.


	metadata: If additional metadata was requested, it will appear as a nested
JSON object in this field.




For example, the query
GET https://host/api/v1/datasets/list?metadata=user.dashboard.favorite&limit=3
might return:

{
    "next_url": "https://pbench.example.com/api/v1/datasets?limit=3&metadata=user.dashboard.favorite&offset=3",
    "results": [
        {
            "metadata": {
                "user.dashboard.favorite": null
            },
            "name": "pbench-user-benchmark__2023.03.23T20.26.03",
            "resource_id": "001ab7f04079f620f6f624b6eea913df"
        },
        {
            "metadata": {
                "user.dashboard.favorite": null
            },
            "name": "pbench-user-benchmark__2023.03.18T19.07.42",
            "resource_id": "006fab853eb42907c6c202af1d6b750b"
        },
        {
            "metadata": {
                "user.dashboard.favorite": null
            },
            "name": "fio__2023.03.28T03.58.19",
            "resource_id": "009ad5f818d9a32af6128dd2b0255161"
        }
    ],
    "total": 722
}








Key namespace summary

When the keysummary query parameter is true (e.g., either ?keysummary or
?keysummary=true), instead of reporting a list of datasets and metadata for
each dataset, the application/json response body contains a hierarchical
representation of the aggregate metadata namespace across all selected datasets.
This returns much less data and is not subject to pagination.

“Leaf” nodes in the metadata tree are represented by null values while any
key with children will be represented as a nested JSON object showing those
child keys. From the example output below a client can identify many key paths
including dataset.access and dataset.metalog.controller.hostname.

Any of the partial or complete key paths represented in the output document are
valid targets for metadata queries: for example dataset.metalog.pbench.script
is a “leaf” node, but GET /api/v1/datasets?metadata=dataset.metalog.pbench
will return a JSON document with the keys config, date, hostname_f,
hostname_ip, hostname_s, iterations, name, rpm-version, script, and
tar-ball-creation-timestamp.

{
    "keys": {
        "dataset": {
            "access": null,
            "id": null,
            "metalog": {
                "controller": {
                    "hostname": null,
                    "hostname-alias": null,
                    "hostname-all-fqdns": null,
                    "hostname-all-ip-addresses": null,
                    "hostname-domain": null,
                    "hostname-fqdn": null,
                    "hostname-ip-address": null,
                    "hostname-nis": null,
                    "hostname-short": null,
                    "ssh_opts": null
                },
                "iterations/1-default": {
                    "iteration_name": null,
                    "iteration_number": null,
                    "user_script": null
                },
                "pbench": {
                    "config": null,
                    "date": null,
                    "hostname_f": null,
                    "hostname_ip": null,
                    "hostname_s": null,
                    "iterations": null,
                    "name": null,
                    "rpm-version": null,
                    "script": null,
                    "tar-ball-creation-timestamp": null
                },
                "run": {
                    "controller": null,
                    "end_run": null,
                    "raw_size": null,
                    "start_run": null
                },
                "tools": {
                    "group": null,
                    "hosts": null,
                    "trigger": null
                },
                "tools/dbutenho.bos.csb": {
                    "hostname-alias": null,
                    "hostname-all-fqdns": null,
                    "hostname-all-ip-addresses": null,
                    "hostname-domain": null,
                    "hostname-fqdn": null,
                    "hostname-ip-address": null,
                    "hostname-nis": null,
                    "hostname-short": null,
                    "label": null,
                    "rpm-version": null,
                    "tools": null,
                    "vmstat": null
                },
                "tools/dbutenho.bos.csb/vmstat": {
                    "install_check_output": null,
                    "install_check_status_code": null,
                    "options": null
                }
            },
            "name": null,
            "owner_id": null,
            "resource_id": null,
            "uploaded": null
        },
        "server": {
            "deletion": null,
            "index-map": {
                "container-pbench.v6.run-data.2023-03": null,
                "container-pbench.v6.run-toc.2023-03": null
            },
            "origin": null,
            "tarball-path": null
        }
    }
}







Combining key namespace summary and date range

When both the keysummary and daterange query parameters are true, the
application/json response body contains the from, to, and keys key
values. If the selected collection filters produce no results, as with
daterange alone, the from and to keys will be omitted and the value of
keys will be an empty object.






            

          

      

      

    

  

  
    
    

    POST /api/v1/relay/<uri>
    

    

    

    
 
  

    
      
          
            
  
POST /api/v1/relay/<uri>

This API creates a dataset resource by reading data from a Relay server. There
are two distinct steps involved:


	A GET on the provided URI must return a “Relay manifest file”. This is a
JSON file (application/json MIME format) providing the original tarball
filename, the tarball’s MD5 hash value, a URI to read the tarball file, and
optionally metadata key/value pairs to be applied to the new dataset. (See
Manifest file keys.)


	A GET on the Relay manifest file’s uri field value must return the
tarball file as an application/octet-stream payload, which will be stored by
the Pbench Server as a dataset.





URI parameters

<uri> string 

The Relay server URI of the tarball’s manifest application/json file. This
JSON object must provide a set of parameter keys as defined below in
Manifest file keys.



Manifest file keys

For example,

{
    "uri": "https://relay.example.com/52adfdd3dbf2a87ed6c1c41a1ce278290064b0455f585149b3dadbe5a0b62f44",
    "md5": "22a4bc5748b920c6ce271eb68f08d91c",
    "name": "fio_rw_2018.02.01T22.40.57.tar.xz",
    "access": "private",
    "metadata": ["server.origin:myrelay", "global.agent:cloud1"]
}





access: [ private | public ] 

The desired initial access scope of the dataset. Select public to make the
dataset accessible to all clients, or private to make the dataset accessible
only to the owner. The default access scope if the key is omitted from the
manifest is private.

For example, "access": "public"

md5: tarball MD5 hash 

The MD5 hash of the compressed tarball file. This must match the actual tarball
octet stream specified by the manifest uri key.

metadata: [metadata key/value strings] 

A set of desired Pbench Server metadata key values to be assigned to the new
dataset. You can set the initial resource name (dataset.name), for example, as
well as assigning any keys in the global and user namespaces. See
metadata for more information.

In particular the client can set any of:


	dataset.name: default dataset name


	server.origin: dataset origin


	server.archiveonly: suppress indexing


	server.deletion: default dataset expiration time.




name: The original tarball file name 

The string value must represent a legal filename with the compound type of
.tar.xz representing a tar archive compressed with the xz program.

uri: Relay URI resolving to the tarball file 

An HTTP GET on this URI, exactly as recorded, must return the original tarball
file as an application/octet-stream.



Request headers

authorization: bearer token 

Bearer schema authorization assigns the ownership of the new dataset to the
authenticated user. E.g., authorization: bearer <token>

content-length tarball size 

The size of the request octet stream in bytes. Generally supplied automatically by
an upload agent such as Python requests or curl.



Response headers

content-type: application/json 

The return is a serialized JSON object with status information.



Response status

200   OK 

Successful request. The dataset MD5 hash is identical to that of a dataset
previously uploaded to the Pbench Server. This is assumed to be an identical
tarball, and the secondary URI (the uri field in the Relay manifest file)
has not been accessed.

201   CREATED 

The tarball was successfully uploaded and the dataset has been created.

400   BAD_REQUEST 

One of the required headers is missing or incorrect, invalid query parameters
were specified, or a bad value was specified for a query parameter. The return
payload will be a JSON document with a message field containing details.

401   UNAUTHORIZED 

The client is not authenticated.

502   BAD GATEWAY 

This means that a problem occurred reading either the manifest file or the
tarball from the Relay server. The return payload will be a JSON document with
a message field containing more information.

503   SERVICE UNAVAILABLE 

The server has been disabled using the server-state server configuration
setting in the server configuration API. The response
body is an application/json document describing the current server state,
a message, and optional JSON data provided by the system administrator.



Response body

The application/json response body consists of a JSON object containing a
message field. On failure this will describe the nature of the problem and
in some cases an errors array will provide details for cases where multiple
problems can occur.

{
    "message": "File successfully uploaded"
}





or

{
    "message": "Dataset already exists",
}





or

{
    "message": "at least one specified metadata key is invalid",
    "errors": [
        "Metadata key 'server.archiveonly' value 'abc' for dataset must be a boolean",
        "improper metadata syntax dataset.name=test must be 'k:v'",
        "Key test.foo is invalid or isn't settable",
    ],
}









            

          

      

      

    

  

  
    
    

    GET /api/v1/server/audit
    

    

    

    
 
  

    
      
          
            
  
GET /api/v1/server/audit

This API returns the Pbench Server audit log as an application/json document.
Various query parameters are available to filter the returned records.


Query parameters


end

The latest date to return.



start

The earliest date to return.



dataset

This is an alias for specifying [#object_id] and [#object_type] to select all
audit records for a specific dataset.



name

Each type of Pbench Server “actor” has a simple name, so it’s easy to select
all upload or index operations.


	config: Server configuration values were modified.


	metadata: Dataset metadata values were modified.


	upload: A dataset was uploaded to the server.






object_id

Select by the object ID: the resource_id for datasets, or the OIDC ID for
users. (Server configuration settings have no ID.) This allows
selecting datasets or users that no longer exist, or have been renamed.



object_name

Select by the name of an object at the time the audit record was generated. If
an object is deleted, or the object name is changed, older audit records retain
the previous name and can be used to track “phases in the object’s evolution”.
To track a dataset across name changes, use object_id and object_type, or
dataset.



object_type

Select by the object type.


	DATASET: Dataset objects.


	CONFIG: Server config settings.


	TEMPLATE: Elasticsearch templates.


	NONE: Unspecified.


	TOKEN: API Key tokens.






operation

The CRUD operation type associated with the audit records.


	CREATE: A resource was created.


	READ: A resource was read. (The Pbench Server does not generally audit read operations.)


	UPDATE: A resource was updated.


	DELETE: A resource was deleted.






reason

Failure reason codes: additional information will be encoded in the attributes
JSON object, but can’t be filtered directly.


	PERMISSION: The operation failed due to a permission failure.


	INTERNAL: The operation failed due to internal Pbench Server processing errors.


	CONSISTENCY: The operation failed due to resource or process consistency issues.






status

Each linked set of audit records begins with a BEGIN record; the status of the
finalization record reflects the completion status.


	BEGIN: Begin an operation.


	SUCCESS: Successful completion of an operation.


	FAILURE: Total failure of an operation.


	WARNING: Partial failure of an operation.






user_id

The OIDC ID of the user responsible for the operation.



user_name

The username of the user responsible for the operation, or BACKGROUND when there’s
no active user.




Request headers

authorization: bearer token 

Bearer schema authorization for a user holding the ADMIN role is required
to access audit log data.

E.g., authorization: bearer <token>



Response headers

content-type: application/json 

The return is a serialized JSON object with the selected audit log records.



Response status

200   OK 

Successful request.

401   UNAUTHORIZED 

The client is not authenticated.

403   FORBIDDEN 

The authenticated client does not hold the ADMIN role required to access the
audit log.

503   SERVICE UNAVAILABLE 

The server has been disabled using the server-state server configuration
setting in the server configuration API. The response
body is an application/json document describing the current server state,
a message, and optional JSON data provided by the system administrator.



Response body

The application/json response body is a JSON document containing the selected
audit records.


Examples

The root_id links multiple audit records from the id of the BEGIN operation
record.

The attributes JSON provides any additional information on the operation,
including at least a message field on failure.

The absolute UTC timestamp when the audit record was generated.

GET /api/v1/server/audit?start=2023-03-26&name=upload&status=success

[
    {
        "attributes": {
            "access": "public",
            "metadata": {
                "global.server.legacy.hostname": "n010.intlab.redhat.com",
                "global.server.legacy.sha1": "9a54d5281",
                "global.server.legacy.version": "0.69.11"
            }
        },
        "id": 24156,
        "name": "upload",
        "object_id": "15a047579afab000606769e35e6aa478",
        "object_name": "fio__2023.03.26T00.14.30",
        "object_type": "DATASET",
        "operation": "CREATE",
        "reason": null,
        "root_id": 24155,
        "status": "SUCCESS",
        "timestamp": "2023-03-26T00:29:13.640724+00:00",
        "user_id": "3",
        "user_name": "legacy"
    },
    {
        "attributes": {
            "access": "public",
            "metadata": {
                "global.server.legacy.hostname": "n010.intlab.redhat.com",
                "global.server.legacy.sha1": "9a54d5281",
                "global.server.legacy.version": "0.69.11"
            }
        },
        "id": 24192,
        "name": "upload",
        "object_id": "f71a5a714e64649df9de0e5d68d52af9",
        "object_name": "uperf__2023.03.26T00.28.47",
        "object_type": "DATASET",
        "operation": "CREATE",
        "reason": null,
        "root_id": 24191,
        "status": "SUCCESS",
        "timestamp": "2023-03-26T00:33:12.407221+00:00",
        "user_id": "3",
        "user_name": "legacy"
    },
    {
        "attributes": {
            "access": "public",
            "metadata": {
                "global.server.legacy.hostname": "n010.intlab.redhat.com",
                "global.server.legacy.sha1": "9a54d5281",
                "global.server.legacy.version": "0.69.11"
            }
        },
        "id": 24236,
        "name": "upload",
        "object_id": "d1993694695a5eb3cb9f34902f0e31ce",
        "object_name": "uperf__2023.03.26T00.36.50",
        "object_type": "DATASET",
        "operation": "CREATE",
        "reason": null,
        "root_id": 24235,
        "status": "SUCCESS",
        "timestamp": "2023-03-26T00:41:12.851840+00:00",
        "user_id": "3",
        "user_name": "legacy"
    },
    {
        "attributes": {
            "access": "public",
            "metadata": {
                "global.server.legacy.hostname": "n010.intlab.redhat.com",
                "global.server.legacy.sha1": "9a54d5281",
                "global.server.legacy.version": "0.69.11"
            }
        },
        "id": 24450,
        "name": "upload",
        "object_id": "d69af9c9d827f2cd553f5ee535be4649",
        "object_name": "fio__2023.03.26T00.44.42",
        "object_type": "DATASET",
        "operation": "CREATE",
        "reason": null,
        "root_id": 24449,
        "status": "SUCCESS",
        "timestamp": "2023-03-26T02:14:14.539689+00:00",
        "user_id": "3",
        "user_name": "legacy"
    },
    {
        "attributes": {
            "access": "public",
            "metadata": {
                "global.server.legacy.hostname": "n010.intlab.redhat.com",
                "global.server.legacy.sha1": "9a54d5281",
                "global.server.legacy.version": "0.69.11"
            }
        },
        "id": 24534,
        "name": "upload",
        "object_id": "141b8c75d66a0e0d1e13eb9a7face6b9",
        "object_name": "uperf__2023.03.26T02.26.33",
        "object_type": "DATASET",
        "operation": "CREATE",
        "reason": null,
        "root_id": 24533,
        "status": "SUCCESS",
        "timestamp": "2023-03-26T02:42:13.794463+00:00",
        "user_id": "3",
        "user_name": "legacy"
    },
]










            

          

      

      

    

  

  
    
    

    GET /api/v1/server/settings[/][{key}]
    

    

    

    
 
  

    
      
          
            
  
GET /api/v1/server/settings[/][{key}]

This API returns an application/json document describing the Pbench Server
settings. When the {key} parameter is specified, the API will return the
specific named server setting. When {key} is omitted, all server settings will
be returned.


Query parameters

None.



Request headers

authorization: bearer token [optional] 

Bearer schema authorization may be specified, but is not required to GET
server settings.



Response headers

content-type: application/json 

The return is a serialized JSON object with the requested server settings.



Response status

400   BAD REQUEST 

The specified {key} value (see settings)
is unknown.



Response body

The application/json response body is a JSON document containing the requested
server setting key and value or, if no {key} was specified, all supported
server settings.


Examples

GET /api/v1/server/settings/dataset-lifetime
{
    "dataset-lifetime": "4"
}

GET /api/v1/server/settings/
{
    "dataset-lifetime": "4",
    "server-banner": {
        "message": "Server will be down for maintenance on Tuesday!",
        "contact": "admin@lab.example.com"
    }
    "server-state": {
        "status": "readonly",
        "message": "rebuilding index ... back to normal soon"
    }
}









PUT /api/v1/server/settings[/][{key}]

This API allows a user holding the ADMIN role to modify server settings. When
the {key} parameter is specified, the API will modify a single named setting.
When {key} is omitted, the application/json request body can be used to
modify multiple server settings at once.


Query parameters

value    string 

When a single server setting is specified with {key} in the URI, you can
specify a string value for the parameter using this query parameter without an
application/json request body. For example, PUT /api/v1/server/settings/key?value=1.

You cannot specify complex JSON server settings this way. Instead, use the
value field in the application/json request body.



Request body

When specifying a complex JSON value for a server setting, or when specifying
multiple server settings, the data to be set is specified in an
application/json request body.

You can specify a single {key} in the URI and then specify the value
using a value field in the application/json request body instead of using
the value query parameter. You can do this even if the value is a simple
string, although it’s more useful when you need to specify a JSON object value.
For example,

PUT /api/v1/server/settings/server-state
{
    "value": {"status": "enabled"}
}





If you omit the {key} value from the URI, specify all server settings you wish
to change in the application/json request body. You can specify a single
server setting, or any group of server settings at once. For example,

PUT /api/v1/server/settings/
{
    "server-state": {"status": "disabled", "message": "down for maintenance"},
    "server-banner": {"message": "Days of 100% uptime: 0"}
}







Request headers

authorization: bearer token 

Bearer schema authorization is required to change any server settings. The
authenticated user must have ADMIN role.



Response headers

content-type: application/json 

The response body is a serialized JSON object with the selected server settings.



Response status

401   UNAUTHORIZED 

The client is attempting to change server settings with PUT and did not
provide an authentication token.

403   FORBIDDEN 

The client is attempting to change server settings with PUT and the provided
authentication token does not correspond to a user with ADMIN role.



Response body

The application/json response body for PUT is exactly the same as for
GET when the same server settings are requested, showing
only the server settings that were changed in the PUT.

This request:

PUT /api/v1/server/settings/dataset-lifetime?value=4





returns this response:

{
    "dataset-lifetime": "4"
}





And this request:

PUT /api/v1/server/settings
{
    "dataset-lifetime": "4 days",
    "server-state": {"status": "enabled"}
}





returns this response:

{
    "dataset-lifetime": "4",
    "server-state": {"status": "enabled"}
}







Server settings


dataset-lifetime

The value for the dataset-lifetime server setting is the maximum number of
days a dataset can be retained on the server. When each dataset is uploaded to
the server, a “deletion date” represented by the dataset metadata
key server.deletion is calculated based on this value and user preferences
(which may specify a shorter lifetime, but not a longer lifetime). When a
dataset has remained on the server past the server.deletion date, it may be
removed automatically by the server to conserve space.

The number of days is specified as an string representing an integer, optionally
followed by a space and day or days. For example, “4” or “4 days” or “4 day”
are equivalent.

{
    "dataset-lifetime": "4"
}







server-banner

This server setting allows a server administrator to set an informational
message that can be retrieved and displayed by any client, for example as a
banner on a UI. The value is a JSON object, containing at least a message
field.

Any additional JSON data may be provided. The server will store the entire
JSON object and return it when a client requests it with
GET /api/v1/server/settings/server-banner. The server will not interpret
any information in this JSON object.

For example, the following are examples of valid banners:

{
    "server-banner": {
        "message": "Have a Happy Pbench Day"
    }
}





{
    "server-banner": {
        "message": "The server will be down for 2 hours on Monday, July 31",
        "contact": {
            "email": "admin@pbench.example.com",
            "phone": "(555) 555-5555",
            "hours": ["8:00 EST", "17:00 EST"]
        },
        "statistics": {
            "datasets": 50000,
            "hours-up": 2.3,
            "users": 26
        }
    }
}







server-state

This server setting allows a server administrator to control the operating state
of the server remotely. As for server-banner, the value is a
JSON object, and any JSON fields passed in to the server will be returned to a
client. The following fields have special meaning:

status 

The operating status of the server.


	enabled: Normal operation.


	disabled: Most server API endpoints will fail with the 503 (service
unavailable) HTTP status. However a few endpoints are always allowed:


	endpoints for server settings information;


	login because only an authenticated user with ADMIN role
can modify server settings;


	logout for consistency;


	server_settings to allow re-enabling the server
or modifying the banner.






	readonly: The server will respond to GET requests for information, but
will return 503 (service unavailable) for any attempt to modify server
state. (With the same exceptions as listed above for disabled.)




message 

A message to explain downtime. This is required when the status is disabled
or readonly and optional otherwise.

When the server status is disabled, or when it’s readonly and a client
tries to modify some data through the API, the server will fail the request
with a 503 (service unavailable) error. It will return an application/json
error response payload containing the full server-state JSON object. The
message key in an error response is a standard convention, and many clients
will display this as an explanation for the failure. The client will also have
access to any additional information provided in the server-state JSON object.

Note that you can set a message when the status is enabled but it won’t
be reported to a client unless a client asks for the server-state setting. The
server-state message is intended to explain server downtime when an API call
fails. The server-banner setting is generally more appropriate to provide
client information under normal operating conditions.






            

          

      

      

    

  

  
    
    

    POST /api/v1/datasets/<dataset>?access=<access>&owner=<name>
    

    

    

    
 
  

    
      
          
            
  
POST /api/v1/datasets/<dataset>?access=<access>&owner=<name>

This API sets the access and/or name property of the identified dataset. The
specified <access> can be either private or public, or the access
query parameter can be omitted to set only the owner. The <name> can be
any username known to the Pbench Server, or the owner query parameter can
be omitted to set only the access.


URI parameters

<dataset> string 

The resource ID of a dataset on the Pbench Server.



Query parameters

access [private | public ] 

The desired access scope of the dataset. This requires that the authenticated
user have UPDATE access to the dataset. Select public to make the dataset
accessible to all clients, or private to make the dataset accessible only
to the owner.

owner valid username 

A valid Pbench Server username to be given ownership of the specified dataset.
This requires the authenticated user to hold ADMIN role establishing
full access to both the current and new owners.



Request headers

authorization: bearer token 

Bearer schema authorization is required to update a dataset.
E.g., authorization: bearer <token>



Response headers

content-type: application/json 

The return is a serialized JSON object with status feedback.



Resource access


	Requires UPDATE access to the <dataset> resource, and, for owner, the
ADMIN role.




See Access model



Response status

200   OK 

Successful request.

401   UNAUTHORIZED 

The client is not authenticated.

403   FORBIDDEN 

The authenticated client does not have `UPDATE`` access to the specified dataset.

404   NOT FOUND 

The <dataset> resource ID does not exist.

503   SERVICE UNAVAILABLE 

The server has been disabled using the server-state server configuration
setting in the server configuration API. The response
body is an application/json document describing the current server state,
a message, and optional JSON data provided by the system administrator.



Response body

The application/json response body consists of a JSON object summarizing the
Elasticsearch index updates. For example, if the dataset has 9 Elasticsearch
index documents and all are updated successfully,

{
    "failure": 0,
    "ok": 9
}





If the dataset had not been indexed, both numbers will be 0. A non-zero
"failure" indicates a partial success, which can be retried.





            

          

      

      

    

  

  
    
    

    PUT /api/v1/upload/<file>
    

    

    

    
 
  

    
      
          
            
  
PUT /api/v1/upload/<file>

This API creates a dataset resource by uploading a tarball to the Pbench Server.
The tarball